The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Basilar Artery

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Basilar Artery

 

High impact information on Basilar Artery

 

Chemical compound and disease context of Basilar Artery

 

Biological context of Basilar Artery

 

Anatomical context of Basilar Artery

 

Associations of Basilar Artery with chemical compounds

  • Serotonin (0.084 muM) did nog potentiate contractile responses of the basilar artery to transmural nerve stimulation or norepinephrine [26].
  • On addition of norepinephrine concentrations less than 1 microM, pial arteries hyperpolarized and relaxed while basilar arteries depolarized and contracted [27].
  • Vasopressin causes endothelium-dependent relaxations of the canine basilar artery [28].
  • These results suggest that the vasoconstrictor component of the rabbit basilar artery response to transmural nerve stimulation (TNS) is mediated via sympathetic adrenergic-like neurons, but at the same time also raise the question whether the transmission process is typical of classic adrenergic neuroeffector mechanisms [29].
  • It is postulated that the selective inhibition of the sustained tonic contraction of the basilar artery is due to a selective inhibition by nimodipine of calcium movement through ROCs in this vessel [30].
 

Gene context of Basilar Artery

 

Analytical, diagnostic and therapeutic context of Basilar Artery

References

  1. Reduced production of cGMP underlies the loss of endothelium-dependent relaxations in the canine basilar artery after subarachnoid hemorrhage. Kim, P., Schini, V.B., Sundt, T.M., Vanhoutte, P.M. Circ. Res. (1992) [Pubmed]
  2. Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Sato, M., Tani, E., Fujikawa, H., Kaibuchi, K. Circ. Res. (2000) [Pubmed]
  3. Intracranial vessels in trigeminal transmitted pain: A PET study. May, A., Büchel, C., Bahra, A., Goadsby, P.J., Frackowiak, R.S. Neuroimage (1999) [Pubmed]
  4. Attenuation and recovery of brain stem autoregulation in spontaneously hypertensive rats. Toyoda, K., Fujii, K., Ibayashi, S., Kitazono, T., Nagao, T., Takaba, H., Fujishima, M. J. Cereb. Blood Flow Metab. (1998) [Pubmed]
  5. Segmental duplication of the basilar artery with thrombosis. Berry, A.D., Kepes, J.J., Wetzel, M.D. Stroke (1988) [Pubmed]
  6. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. Suzuki, H., Kanamaru, K., Tsunoda, H., Inada, H., Kuroki, M., Sun, H., Waga, S., Tanaka, T. J. Clin. Invest. (1999) [Pubmed]
  7. Possible cellular mechanism for cerebral vasospasm after experimental subarachnoid hemorrhage in the dog. Harder, D.R., Dernbach, P., Waters, A. J. Clin. Invest. (1987) [Pubmed]
  8. Lysis of basilar artery occlusion with tissue plasminogen activator. Henze, T., Boeer, A., Tebbe, U., Romatowski, J. Lancet (1987) [Pubmed]
  9. Nitric oxide accounts for dose-dependent estrogen-mediated coronary relaxation after acute estrogen withdrawal. Collins, P., Shay, J., Jiang, C., Moss, J. Circulation (1994) [Pubmed]
  10. Multiple connexins form gap junction channels in rat basilar artery smooth muscle cells. Li, X., Simard, J.M. Circ. Res. (1999) [Pubmed]
  11. L-arginine restores dilator responses of the basilar artery to acetylcholine during chronic hypertension. Kitazono, T., Faraci, F.M., Heistad, D.D. Hypertension (1996) [Pubmed]
  12. Uptake and release of serotonin in rat cerebrovascular nerves after subarachnoid hemorrhage. Szabò, C., Emilsson, K., Hardebo, J.E., Nystedt, S., Owman, C. Stroke (1992) [Pubmed]
  13. Anticardiolipin antibody aggravates cerebral vasospasm after subarachnoid hemorrhage in rabbits. Nomura, H., Hirashima, Y., Endo, S., Takaku, A. Stroke (1998) [Pubmed]
  14. Magnesium sulfate reverses experimental delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Ram, Z., Sadeh, M., Shacked, I., Sahar, A., Hadani, M. Stroke (1991) [Pubmed]
  15. Activation of the arachidonate 5-lipoxygenase pathway in the canine basilar artery after experimental subarachnoidal hemorrhage. Shimizu, T., Watanabe, T., Asano, T., Seyama, Y., Takakura, K. J. Neurochem. (1988) [Pubmed]
  16. Nicotine exposure, mimicked smoking, directly and indirectly enhanced protein kinase C activity in isolated canine basilar artery, resulting in enhancement of arterial contraction. Koide, M., Nishizawa, S., Yamamoto, S., Yamaguchi, M., Namba, H., Terakawa, S. J. Cereb. Blood Flow Metab. (2005) [Pubmed]
  17. Role of nitric oxide in the cerebral vasodilatory responses to vasopressin and oxytocin in dogs. Oyama, H., Suzuki, Y., Satoh, S., Kajita, Y., Takayasu, M., Shibuya, M., Sugita, K. J. Cereb. Blood Flow Metab. (1993) [Pubmed]
  18. Myosin light chain phosphorylation and contractile proteins in a canine two-hemorrhage model of subarachnoid hemorrhage. Sun, H., Kanamaru, K., Ito, M., Suzuki, H., Kojima, T., Waga, S., Kureishi, Y., Nakano, T. Stroke (1998) [Pubmed]
  19. Identification, characterization, and functional role of phosphodiesterase type IV in cerebral vessels: effects of selective phosphodiesterase inhibitors. Willette, R.N., Shiloh, A.O., Sauermelch, C.F., Sulpizio, A., Michell, M.P., Cieslinski, L.B., Torphy, T.J., Ohlstein, E.H. J. Cereb. Blood Flow Metab. (1997) [Pubmed]
  20. Activation of protein kinases in canine basilar artery in vasospasm. Fujikawa, H., Tani, E., Yamaura, I., Ozaki, I., Miyaji, K., Sato, M., Takahashi, K., Imajoh-Ohmi, S. J. Cereb. Blood Flow Metab. (1999) [Pubmed]
  21. Distribution and physiological roles of ATP-sensitive K+ channels in the vertebrobasilar system of the rabbit. Nagao, T., Ibayashi, S., Sadoshima, S., Fujii, K., Fujii, K., Ohya, Y., Fujishima, M. Circ. Res. (1996) [Pubmed]
  22. Experimental cerebral vasospasm. Part 2. Contractility of spastic arterial wall. Nagasawa, S., Handa, H., Naruo, Y., Watanabe, H., Moritake, K., Hayashi, K. Stroke (1983) [Pubmed]
  23. Responses of isolated feline and human cerebral arteries to prostacyclin and some of its metabolites. Uski, T., Andersson, K.E., Brandt, L., Edvinsson, L., Ljunggren, B. J. Cereb. Blood Flow Metab. (1983) [Pubmed]
  24. Mechanism of the enhanced vasoconstrictor responses to endothelin-1 in canine cerebral arteries. Tanoi, C., Suzuki, Y., Shibuya, M., Sugita, K., Masuzawa, K., Asano, M. J. Cereb. Blood Flow Metab. (1991) [Pubmed]
  25. Responses of rat basilar artery to acetylcholine and platelet products in vivo. Faraci, F.M., Mayhan, W.G., Heistad, D.D. Stroke (1991) [Pubmed]
  26. Histamine potentiation of nerve- and drug-induced responses of a rabbit cerebral artery. Bevan, J.A., Duckles, S.P., Lee, T.J. Circ. Res. (1975) [Pubmed]
  27. Membrane electrical mechanism of basilar artery constriction and pial artery dilation by norepinephrine. Harder, D.R., Abel, P.W., Hermsmeyer, K. Circ. Res. (1981) [Pubmed]
  28. Vasopressin causes endothelium-dependent relaxations of the canine basilar artery. Katusic, Z.S., Shepherd, J.T., Vanhoutte, P.M. Circ. Res. (1984) [Pubmed]
  29. Neurogenic sympathetic vasoconstriction of the rabbit basilar artery. Lee, T.J., Su, C., Bevan, J.A. Circ. Res. (1976) [Pubmed]
  30. The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium-antagonistic dihydropyridines. An investigation of the mechanism of action of nimodipine. Towart, R. Circ. Res. (1981) [Pubmed]
  31. Endothelin-induced contraction and relaxation of rat isolated basilar artery: effect of BQ-123. Feger, G.I., Schilling, L., Ehrenreich, H., Wahl, M. J. Cereb. Blood Flow Metab. (1994) [Pubmed]
  32. Endothelin B receptor-deficient rats as a subtraction model to study the cerebral endothelin system. Ehrenreich, H., Oldenburg, J., Hasselblatt, M., Herms, J., Dembowski, C., Löffler, B.M., Brück, W., Kamrowski-Kruck, H., Gall, S., Sirén, A.L., Schilling, L. Neuroscience (1999) [Pubmed]
  33. Activation of the JAK-STAT signaling pathway in the rat basilar artery after subarachnoid hemorrhage. Osuka, K., Watanabe, Y., Yamauchi, K., Nakazawa, A., Usuda, N., Tokuda, M., Yoshida, J. Brain Res. (2006) [Pubmed]
  34. Equipotent in vitro actions of alpha- and beta-CGRP on guinea pig basilar artery are likely to be mediated via CRLR derived CGRP receptors. Sams, A., Yenidunya, A., Engberg, J., Jansen-Olesen, I. Regul. Pept. (1999) [Pubmed]
  35. Vasoconstrictive effect of angiotensin IV in isolated rat basilar artery independent of AT1 and AT2 receptors. Faure, S., Javellaud, J., Achard, J.M., Oudart, N. J. Vasc. Res. (2006) [Pubmed]
  36. Relationship between vascular adrenergic receptors and prostaglandin biosyntheses in canine diabetic coronary arteries. Koltai, M.Z., Rösen, P., Hadházy, P., Ballagi-Pordány, G., Köszeghy, A., Pogátsa, G. Diabetologia (1988) [Pubmed]
  37. Does cerebral vasospasm result from denervation supersensitivity? Duff, T.A., Feilbach, J.A., Scott, G. Stroke (1987) [Pubmed]
  38. Effect of nimodipine on canine cerebrovascular responses to 5-hydroxytryptamine and potassium chloride after exposure to blood. Tsuji, T., Cook, D.A. Stroke (1989) [Pubmed]
 
WikiGenes - Universities