The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN60839     N-(3-methyl-1,1-dioxo-1,4- thiazinan-4-yl)...

Synonyms: AG-E-67680, SPBio_003068, AC1L1MAZ, CTK8G1879, HMS1571M09, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lampit


High impact information on Lampit

  • In Trypanosoma cruzi, an organism that is highly susceptible to oxidative stress, LipDH participates in the redox cycling of nifurtimox, one of the most effective anti-Chagas agents [6].
  • Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. Evidence of an outer membrane-located nitroreductase [7].
  • Nifurtimox is reduced by rat liver microsomes to a nitro anion-free radical as indicated by ESR spectroscopy [1].
  • Nifurtimox anion radical generation is significantly stimulated by rat brain and testes homogenates [1].
  • This subcellular fraction gives a steady state radical concentration which is proportional to the square root of the protein concentration, suggesting that the nifurtimox anion radical is a necessary intermediate in the reduction and that the radical decays through a nonenzymatic second order process [1].

Chemical compound and disease context of Lampit


Biological context of Lampit

  • Immunological studies showed that treatment with nifurtimox led to a decrease in anti-Trypanosoma cruzi antibodies engaged in parasite destruction, inducing either complement-dependent lysis or antibody-dependent cytotoxicity, but no difference in anti-T. cruzi cell-mediated immunity was found between treated and nontreated chagasic animals [2].
  • Nifurtimox inhibition affected polyenoic fatty acids and cytochrome P-450 degradation that follows lipid peroxidation [13].
  • A group of 66 children was treated with nifurtimox, and followed up every 3 months during the first year and every 6 months during the second and third year post-therapy, by PCR, xenodiagnosis and serology [14].
  • Labeling of RNA with [3H]uridine in the presence of nifurtimox followed atypical kinetics since, depending on incubation time and concentration, RNA degradation prevailed over RNA synthesis [15].
  • Isolated from axenic cultures of the parental cells (IC50 1.5 microM), R-Dm28 epimastigotes exhibited 13-fold (IC50) 20 microM) higher resistance to this inhibitor and did not display cross-resistance to unrelated trypanocidal drugs, such as benznidazol and nifurtimox [16].

Anatomical context of Lampit


Associations of Lampit with other chemical compounds


Gene context of Lampit


Analytical, diagnostic and therapeutic context of Lampit


  1. Generation of free radicals induced by nifurtimox in mammalian tissues. Docampo, R., Mason, R.P., Mottley, C., Muniz, R.P. J. Biol. Chem. (1981) [Pubmed]
  2. Differences in resistance to reinfection with low and high inocula of Trypanosoma cruzi in chagasic mice treated with nifurtimox and relation to immune response. Cabeza Meckert, P., Chambó, J.G., Laguens, R.P. Antimicrob. Agents Chemother. (1988) [Pubmed]
  3. Cell-mediated immunity in Chagas' disease: Alterations induced by treatment with a trypanocidal drug (nifurtimox). Lelchuk, R., Cardoni, R.L., Fuks, A.S. Clin. Exp. Immunol. (1977) [Pubmed]
  4. Role of classical nitroreductase and O-acetyltransferase on the mutagenicity of nifurtimox and eight derivatives in Salmonella typhimurium. Jurado, J., Pueyo, C. Environ. Mol. Mutagen. (1995) [Pubmed]
  5. Thirteenfold increase of chromosomal aberrations non-randomly distributed in chagasic children treated with nifurtimox. Gorla, N.B., Ledesma, O.S., Barbieri, G.P., Larripa, I.B. Mutat. Res. (1989) [Pubmed]
  6. Flavoprotein structure and mechanism. 5. Trypanothione reductase and lipoamide dehydrogenase as targets for a structure-based drug design. Krauth-Siegel, R.L., Schöneck, R. FASEB J. (1995) [Pubmed]
  7. Reduction of nifurtimox and nitrofurantoin to free radical metabolites by rat liver mitochondria. Evidence of an outer membrane-located nitroreductase. Moreno, S.N., Mason, R.P., Docampo, R. J. Biol. Chem. (1984) [Pubmed]
  8. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Faundez, M., Pino, L., Letelier, P., Ortiz, C., López, R., Seguel, C., Ferreira, J., Pavani, M., Morello, A., Maya, J.D. Antimicrob. Agents Chemother. (2005) [Pubmed]
  9. Study on the mutagenicity of nifurtimox and eight derivatives with the L-arabinose resistance test of Salmonella typhimurium. Alejandre-Durán, E., Claramunt, R.M., Sanz, D., Vilaplana, M.J., Molina, P., Pueyo, C. Mutat. Res. (1988) [Pubmed]
  10. Trypanosoma cruzi: efficacy of the 2-substituted, 5-nitroimidazoles, MK-436 and L634,549, in tissue culture and mice. Murray, P.K., Habbersett, M.C., Meurer, R.D. Am. J. Trop. Med. Hyg. (1983) [Pubmed]
  11. Primaquine can mediate hydroxyl radical generation by Trypanosoma cruzi extracts. Augusto, O., Alves, M.J., Colli, W., Filardi, L.S., Brener, Z. Biochem. Biophys. Res. Commun. (1986) [Pubmed]
  12. Mutagenicity of nifurtimox in Escherichia coli. Ohnishi, T., Ohashi, Y., Nozu, K., Inoki, S. Mutat. Res. (1980) [Pubmed]
  13. Nitrofuran inhibition of microsomal lipid peroxidation. Dubin, M., Grinblat, L., Fernandez Villamil, S.H., Stoppani, A.O. FEBS Lett. (1987) [Pubmed]
  14. Treatment of Trypanosoma cruzi-infected children with nifurtimox: a 3 year follow-up by PCR. Solari, A., Ortíz, S., Soto, A., Arancibia, C., Campillay, R., Contreras, M., Salinas, P., Rojas, A., Schenone, H. J. Antimicrob. Chemother. (2001) [Pubmed]
  15. Effects of nitroheterocyclic drugs on macromolecule synthesis and degradation in Trypanosoma cruzi. Goijman, S.G., Stoppani, A.O. Biochem. Pharmacol. (1985) [Pubmed]
  16. Altered expression of cruzipain and a cathepsin B-like target in a Trypanosoma cruzi cell line displaying resistance to synthetic inhibitors of cysteine-proteinases. Yong, V., Schmitz, V., Vannier-Santos, M.A., de Lima, A.P., Lalmanach, G., Juliano, L., Gauthier, F., Scharfstein, J. Mol. Biochem. Parasitol. (2000) [Pubmed]
  17. Tissue-reacting antibodies (EVI antibodies) in nifurtimox-treated patients with Chagas's disease. Schmuñis, G.A., Cossio, P.M., Szarfman, A., Coarasa, L., Arana, R.M. J. Infect. Dis. (1978) [Pubmed]
  18. Increased biliary secretion and loss of hepatic glutathione in rat liver after nifurtimox treatment. Dubin, M., Moreno, S.N., Martino, E.E., Docampo, R., Stoppani, A.O. Biochem. Pharmacol. (1983) [Pubmed]
  19. Nifurtimox-induced alterations in the cell-mediated immune response to PPD tin guinea-pigs. Lelchuk, R., Cardoni, R.L., Levis, S. Clin. Exp. Immunol. (1977) [Pubmed]
  20. Enzyme immunoassay in cell monolayers for evaluation of in vitro activity of chemotherapeutic agents against Trypanosoma cruzi. De Titto, E.H., Araujo, F.G. Am. J. Trop. Med. Hyg. (1988) [Pubmed]
  21. Deletion of the Trypanosoma brucei Superoxide Dismutase Gene sodb1 Increases Sensitivity to Nifurtimox and Benznidazole. Prathalingham, S.R., Wilkinson, S.R., Horn, D., Kelly, J.M. Antimicrob. Agents Chemother. (2007) [Pubmed]
  22. Equivalence Trial of Melarsoprol and Nifurtimox Monotherapy and Combination Therapy for the Treatment of Second-Stage Trypanosoma brucei gambiense Sleeping Sickness. Bisser, S., N'siesi, F.X., Lejon, V., Preux, P.M., Van Nieuwenhove, S., Miaka Mia Bilenge, C., Buscher, P. J. Infect. Dis. (2007) [Pubmed]
  23. Cloning, sequencing and functional expression of dihydrolipoamide dehydrogenase from the human pathogen Trypanosoma cruzi. Schöneck, R., Billaut-Mulot, O., Numrich, P., Ouaissi, M.A., Krauth-Siegel, R.L. Eur. J. Biochem. (1997) [Pubmed]
  24. Effect of length of treatment with Bayer 2502 on isolation of Trypanosoma cruzi and resistance to challenge in the mouse. Morrow, D.T., Wescott, R.B., Davis, W.C. Am. J. Trop. Med. Hyg. (1977) [Pubmed]
  25. Reversal of drug resistance in Trypanosoma cruzi and Leishmania donovani by verapamil. Neal, R.A., van Bueren, J., McCoy, N.G., Iwobi, M. Trans. R. Soc. Trop. Med. Hyg. (1989) [Pubmed]
  26. Cellular and molecular biological analyses of nifurtimox resistance in Trypanosoma cruzi. Nozaki, T., Engel, J.C., Dvorak, J.A. Am. J. Trop. Med. Hyg. (1996) [Pubmed]
  27. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Jockers-Scherübl, M.C., Schirmer, R.H., Krauth-Siegel, R.L. Eur. J. Biochem. (1989) [Pubmed]
  28. Reactivation of Chagas' disease in patients with AIDS: report of three new cases and review of the literature. Ferreira, M.S., Nishioka, S.d.e. .A., Silvestre, M.T., Borges, A.S., Nunes-Araújo, F.R., Rocha, A. Clin. Infect. Dis. (1997) [Pubmed]
  29. The effects of Lampit (Bayer 2502) on the interaction of Trypanosoma cruzi with vertebrate cells in vitro. Dvorak, J.A., Howe, C.L. Am. J. Trop. Med. Hyg. (1977) [Pubmed]
WikiGenes - Universities