The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

thiolate     sulfanide

Synonyms: thiolates, hydrosulfide, HS anion, sulfur(1-), CPD-846, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of sulfanide

 

High impact information on sulfanide

  • Interestingly, close to the PIF-pocket in PDK1, there is an ordered sulfate ion, interacting tightly with four surrounding side chains [6].
  • The structure revealed the presence in the active site of a sulfate ion attached by an arginine clamp made by the side chain from two strictly conserved arginine residues [7].
  • Previous x-ray crystallographic analysis of Zea mays PEPC has revealed a binding site for sulfate ion, speculated to be the site for an allosteric activator, glucose 6-phosphate (Glc-6-P) (Matsumura, H., Xie, Y., Shirakata, S., Inoue, T., Yoshinaga, T., Ueno, Y., Izui, K., and Kai, Y. (2002) Structure (Lond.) 10, 1721-1730) [8].
  • Arrangement of substrates at the active site of yeast phosphoglycerate kinase. Effect of sulfate ion [9].
  • Sulfate ion is not considered to be the physiological Fe2+-activator of P-enolpyruvate carboxykinase in rat liver cytosol, as this function is fulfilled by a newly discovered liver protein [10].
 

Chemical compound and disease context of sulfanide

 

Biological context of sulfanide

  • Similarly, NMR studies showed that the environment of CrATP bound at the active site was altered by the presence of sulfate ion [9].
  • A spectrophotometric determination of sulfate ion and its application in studies of substrate purity and of aryl sulfatase A kinetics [15].
  • Arg41 from the other subunit enters the catalytic site and forms a hydrogen bond with a bound sulfate ion, an RNA main chain phosphate analog, thus activating its nucleophilic state [16].
  • To evaluate the role of alternative mechanisms in H(2)S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined [13].
  • The result show that the isolated A. terreus strain metabolises PAHs by reaction similar to those previously reported for non lignolinolytic fungi with a mechanism that suggests the hydroxylation by a cytochrome P-450 monooxygenase followed by conjugation with sulfate ion [17].
 

Anatomical context of sulfanide

 

Associations of sulfanide with other chemical compounds

 

Gene context of sulfanide

  • Inhibition data of the cytosolic isozymes CA I and CA II as well as the membrane-bound isozyme CA IV with a large number of anionic species such as halides, pseudohalides, bicarbonate, nitrate, hydrosulfide, arsenate, sulfamate, and sulfamidate and so on, are also provided for comparison [26].
  • The structure of MTAP with methylthioadenosine and sulfate ion soaked into the active site was also determined using diffraction data to 1.7 A resolution [27].
  • 4. Sulfate ion caused 3-fold activation of aldose reductase, but little for that of aldehyde reductase [28].
  • The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the p1 phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound [29].
  • The hydrogen bond with the N delta 2 moiety of Asn 18 appears to be the most conserved interaction, being similar to those observed for sulfate ion bound to human basic FGF (bFGF) and similar but not identical to interactions observed for bovine aFGF with heparin analogs [30].
 

Analytical, diagnostic and therapeutic context of sulfanide

References

  1. Crystal structure of novel NADP-dependent 3-hydroxyisobutyrate dehydrogenase from Thermus thermophilus HB8. Lokanath, N.K., Ohshima, N., Takio, K., Shiromizu, I., Kuroishi, C., Okazaki, N., Kuramitsu, S., Yokoyama, S., Miyano, M., Kunishima, N. J. Mol. Biol. (2005) [Pubmed]
  2. Structure of the bacteriophage lambda Ser/Thr protein phosphatase with sulfate ion bound in two coordination modes. Voegtli, W.C., White, D.J., Reiter, N.J., Rusnak, F., Rosenzweig, A.C. Biochemistry (2000) [Pubmed]
  3. Crystal structure at 2.4 A resolution of Borrelia burgdorferi inosine 5'-monophosphate dehydrogenase: evidence of a substrate-induced hinged-lid motion by loop 6. McMillan, F.M., Cahoon, M., White, A., Hedstrom, L., Petsko, G.A., Ringe, D. Biochemistry (2000) [Pubmed]
  4. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Zhang, H., Zhi, L., Moore, P.K., Bhatia, M. Am. J. Physiol. Lung Cell Mol. Physiol. (2006) [Pubmed]
  5. Structure and enzymatic activity of botulinum neurotoxins. Swaminathan, S., Eswaramoorthy, S., Kumaran, D. Mov. Disord. (2004) [Pubmed]
  6. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. Biondi, R.M., Komander, D., Thomas, C.C., Lizcano, J.M., Deak, M., Alessi, D.R., van Aalten, D.M. EMBO J. (2002) [Pubmed]
  7. Structure-based Functional Annotation: YEAST ymr099c CODES FOR A D-HEXOSE-6-PHOSPHATE MUTAROTASE. Graille, M., Baltaze, J.P., Leulliot, N., Liger, D., Quevillon-Cheruel, S., van Tilbeurgh, H. J. Biol. Chem. (2006) [Pubmed]
  8. Maize phosphoenolpyruvate carboxylase. Mutations at the putative binding site for glucose 6-phosphate caused desensitization and abolished responsiveness to regulatory phosphorylation. Takahashi-Terada, A., Kotera, M., Ohshima, K., Furumoto, T., Matsumura, H., Kai, Y., Izui, K. J. Biol. Chem. (2005) [Pubmed]
  9. Arrangement of substrates at the active site of yeast phosphoglycerate kinase. Effect of sulfate ion. Gregory, J.D., Serpersu, E.H. J. Biol. Chem. (1993) [Pubmed]
  10. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. Bentle, L.A., Lardy, H.A. J. Biol. Chem. (1976) [Pubmed]
  11. Suppressive effect of sulfate on the development of hypertension in DOCA-salt hypertensive rats. Kubota, Y., Sano, H., Kawahara, J., Hattori, K., Miki, T., Suzuki, H., Fukuzaki, H. Am. J. Hypertens. (1991) [Pubmed]
  12. Crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase complexed with cofactors: implications of a flexible loop movement upon substrate binding. Yajima, S., Nonaka, T., Kuzuyama, T., Seto, H., Ohsawa, K. J. Biochem. (2002) [Pubmed]
  13. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures. Thompson, R.W., Valentine, H.L., Valentine, W.M. Toxicology (2003) [Pubmed]
  14. Structure of Staphylococcus aureus cytidine monophosphate kinase in complex with cytidine 5'-monophosphate. Dhaliwal, B., Ren, J., Lockyer, M., Charles, I., Hawkins, A.R., Stammers, D.K. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. (2006) [Pubmed]
  15. A spectrophotometric determination of sulfate ion and its application in studies of substrate purity and of aryl sulfatase A kinetics. Waheed, A., Van Etten, R.L. Anal. Biochem. (1978) [Pubmed]
  16. Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme. Nureki, O., Watanabe, K., Fukai, S., Ishii, R., Endo, Y., Hori, H., Yokoyama, S. Structure (Camb.) (2004) [Pubmed]
  17. Pyrene and benzo(a)pyrene metabolism by an Aspergillus terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil. Capotorti, G., Digianvincenzo, P., Cesti, P., Bernardi, A., Guglielmetti, G. Biodegradation (2004) [Pubmed]
  18. Sulfate transport in Neurospora crassa: regulation, turnover, and cellular localization of the CYS-14 protein. Jarai, G., Marzluf, G.A. Biochemistry (1991) [Pubmed]
  19. Activation energy of sulfate ion transport across methylated human erythrocyte membranes. Janas, T., Janas, T., Kilian, M., Przestalski, S. FEBS Lett. (1988) [Pubmed]
  20. Characterization of sulfate transport in the hepatic endoplasmic reticulum. Csala, M., Senesi, S., Bánhegyi, G., Mandl, J., Benedetti, A. Arch. Biochem. Biophys. (2005) [Pubmed]
  21. Sodium and sulfate ion transport in yeast vacuoles. Hirata, T., Wada, Y., Futai, M. J. Biochem. (2002) [Pubmed]
  22. X-ray structure of the ferredoxin:NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and crystallographic studies of NADP+ binding at 2.25 A resolution. Serre, L., Vellieux, F.M., Medina, M., Gomez-Moreno, C., Fontecilla-Camps, J.C., Frey, M. J. Mol. Biol. (1996) [Pubmed]
  23. Refined crystal structure of cytoplasmic malate dehydrogenase at 2.5-A resolution. Birktoft, J.J., Rhodes, G., Banaszak, L.J. Biochemistry (1989) [Pubmed]
  24. Substrate specificities of Escherichia coli thioesterase I/protease I/lysophospholipase L1 are governed by its switch loop movement. Lo, Y.C., Lin, S.C., Shaw, J.F., Liaw, Y.C. Biochemistry (2005) [Pubmed]
  25. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Polekhina, G., Board, P.G., Blackburn, A.C., Parker, M.W. Biochemistry (2001) [Pubmed]
  26. Carbonic anhydrase inhibitors: inhibition of human and murine mitochondrial isozymes V with anions. Franchi, M., Vullo, D., Gallori, E., Antel, J., Wurl, M., Scozzafava, A., Supuran, C.T. Bioorg. Med. Chem. Lett. (2003) [Pubmed]
  27. The structure of human 5'-deoxy-5'-methylthioadenosine phosphorylase at 1.7 A resolution provides insights into substrate binding and catalysis. Appleby, T.C., Erion, M.D., Ealick, S.E. Structure (1999) [Pubmed]
  28. Purification and characterization of human testis aldose and aldehyde reductase. Tanimoto, T., Ohta, M., Tanaka, A., Ikemoto, I., Machida, T. Int. J. Biochem. (1991) [Pubmed]
  29. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. Kobe, B., Deisenhofer, J. J. Mol. Biol. (1996) [Pubmed]
  30. X-ray crystal structure of human acidic fibroblast growth factor. Blaber, M., DiSalvo, J., Thomas, K.A. Biochemistry (1996) [Pubmed]
  31. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. Zhong, G., Chen, F., Cheng, Y., Tang, C., Du, J. J. Hypertens. (2003) [Pubmed]
  32. A differential scanning calorimetric study of the binding of sulfate ion and of Cibacron blue F3GA to yeast phosphoglycerate kinase. Hu, C.Q., Sturtevant, J.M. Biochemistry (1989) [Pubmed]
  33. An enzyme electrode based on immobilized arylsulfatase for the selective assay of sulfate ion. Cserfalvi, T., Guilbault, G.G. Anal. Chim. Acta (1976) [Pubmed]
  34. Structure of chicken skeletal muscle troponin C at 1.78 A resolution. Satyshur, K.A., Pyzalska, D., Greaser, M., Rao, S.T., Sundaralingam, M. Acta Crystallogr. D Biol. Crystallogr. (1994) [Pubmed]
  35. Binding of sodium dodecyl sulfate to linear and star homopolymers of the nonionic poly(methoxyhexa(ethylene glycol) methacrylate) and the polycation poly(2-(dimethylamino)ethyl methacrylate): electromotive force, isothermal titration calorimetry, surface tension, and small-angle neutron scattering measurements. Couderc-Azouani, S., Sidhu, J., Georgiou, T.K., Charalambous, D.C., Vamvakaki, M., Patrickios, C.S., Bloor, D.M., Penfold, J., Holzwarth, J.F., Wyn-Jones, E. Langmuir : the ACS journal of surfaces and colloids. (2004) [Pubmed]
 
WikiGenes - Universities