The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEBI:29959     pyridine-2,3-dicarboxylate

Synonyms: AC1NUT26, ZINC00331671, FT-0674187, 3c2o, 2,3-pyridinedicarboxylate, ...
This record was replaced with 1066.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of quinolinic acid


Psychiatry related information on quinolinic acid


High impact information on quinolinic acid

  • Excitotoxic death of these neurons was increased after intrastriatal injection of quinolinate in vivo, and after NMDA but not AMPA exposure in culture [7].
  • Immunocytochemical localization of the endogenous neuroexcitotoxin quinolinate in human peripheral blood monocytes/macrophages and the effect of human T-cell lymphotropic virus type I infection [8].
  • We have previously observed that an axon-sparing injury to the developing striatum induced by the excitotoxin quinolinate results in a decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the adult [9].
  • We have examined by morphologic and biochemical means the time course and character of cell death in SN following a unilateral striatal lesion with quinolinate in immature rats [9].
  • MK801, but not FK506, attenuated the loss of glutamate decarboxylase and choline acetyltransferase activity induced by intrastriatal injection of quinolinate [10].

Chemical compound and disease context of quinolinic acid


Biological context of quinolinic acid


Anatomical context of quinolinic acid


Associations of quinolinic acid with other chemical compounds


Gene context of quinolinic acid


Analytical, diagnostic and therapeutic context of quinolinic acid


  1. Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Koh, J.Y., Peters, S., Choi, D.W. Science (1986) [Pubmed]
  2. Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis". Fukuoka, S., Ishiguro, K., Yanagihara, K., Tanabe, A., Egashira, Y., Sanada, H., Shibata, K. J. Biol. Chem. (2002) [Pubmed]
  3. Early steps in the biosynthesis of NAD in Arabidopsis start with aspartate and occur in the plastid. Katoh, A., Uenohara, K., Akita, M., Hashimoto, T. Plant Physiol. (2006) [Pubmed]
  4. Species heterogeneity between gerbils and rats: quinolinate production by microglia and astrocytes and accumulations in response to ischemic brain injury and systemic immune activation. Heyes, M.P., Saito, K., Chen, C.Y., Proescholdt, M.G., Nowak, T.S., Li, J., Beagles, K.E., Proescholdt, M.A., Zito, M.A., Kawai, K., Markey, S.P. J. Neurochem. (1997) [Pubmed]
  5. Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease. Guidetti, P., Luthi-Carter, R.E., Augood, S.J., Schwarcz, R. Neurobiol. Dis. (2004) [Pubmed]
  6. Dopamine-glutamate interactions in the striatum: behaviourally relevant modification of excitotoxicity by dopamine receptor-mediated mechanisms. Garside, S., Furtado, J.C., Mazurek, M.F. Neuroscience (1996) [Pubmed]
  7. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease. Zeron, M.M., Hansson, O., Chen, N., Wellington, C.L., Leavitt, B.R., Brundin, P., Hayden, M.R., Raymond, L.A. Neuron (2002) [Pubmed]
  8. Immunocytochemical localization of the endogenous neuroexcitotoxin quinolinate in human peripheral blood monocytes/macrophages and the effect of human T-cell lymphotropic virus type I infection. Venkateshan, C.N., Narayanan, R., Espey, M.G., Moffett, J.R., Gajdusek, D.C., Gibbs, C.J., Namboodiri, M.A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  9. Apoptosis in substantia nigra following developmental striatal excitotoxic injury. Macaya, A., Munell, F., Gubits, R.M., Burke, R.E. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  10. Neuroprotective actions of FK506 in experimental stroke: in vivo evidence against an antiexcitotoxic mechanism. Butcher, S.P., Henshall, D.C., Teramura, Y., Iwasaki, K., Sharkey, J. J. Neurosci. (1997) [Pubmed]
  11. Protein A of quinolinate synthetase is the site of oxygen poisoning of pyridine nucleotide coenzyme synthesis in Escherichia coli. Draczynska-Lusiak, B., Brown, O.R. Free Radic. Biol. Med. (1992) [Pubmed]
  12. 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Guidetti, P., Schwarcz, R. Eur. J. Neurosci. (1999) [Pubmed]
  13. Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1. Chang, H.K., Zylstra, G.J. J. Bacteriol. (1999) [Pubmed]
  14. U50,488 protection against HIV-1-related neurotoxicity: involvement of quinolinic acid suppression. Chao, C.C., Hu, S., Gekker, G., Lokensgard, J.R., Heyes, M.P., Peterson, P.K. Neuropharmacology (2000) [Pubmed]
  15. S-Allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Pérez-Severiano, F., Rodríguez-Pérez, M., Pedraza-Chaverrí, J., Maldonado, P.D., Medina-Campos, O.N., Ortíz-Plata, A., Sánchez-García, A., Villeda-Hernández, J., Galván-Arzate, S., Aguilera, P., Santamaría, A. Neurochem. Int. (2004) [Pubmed]
  16. Crystal structure of the NAD biosynthetic enzyme quinolinate synthase. Sakuraba, H., Tsuge, H., Yoneda, K., Katunuma, N., Ohshima, T. J. Biol. Chem. (2005) [Pubmed]
  17. Inhibition of renal gluconeogenesis by guinolinate and hydrazine in diabetic rats. Suzuki, T., Ferris, R.K., Gordon, E.E. Endocrinology (1975) [Pubmed]
  18. Differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 after excitotoxicity in a rat model of Huntington's disease. Canals, J.M., Marco, S., Checa, N., Michels, A., Pérez-Navarro, E., Arenas, E., Alberch, J. Neurobiol. Dis. (1998) [Pubmed]
  19. Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurones. Herrling, P.L., Morris, R., Salt, T.E. J. Physiol. (Lond.) (1983) [Pubmed]
  20. The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Stípek, S., Stastný, F., Pláteník, J., Crkovská, J., Zima, T. Neurochem. Int. (1997) [Pubmed]
  21. Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation. Foster, A.C., Gill, R., Woodruff, G.N. J. Neurosci. (1988) [Pubmed]
  22. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Curras, M.C., Dingledine, R. Mol. Pharmacol. (1992) [Pubmed]
  23. Permeability of the liver cell membrane to quinolinate. Elliott, K.R., Pogson, C.I., Smith, S.A. Biochem. J. (1977) [Pubmed]
  24. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington's disease. Pérez-Navarro, E., Canudas, A.M., Akerund, P., Alberch, J., Arenas, E. J. Neurochem. (2000) [Pubmed]
  25. Increased cortical kynurenate content in schizophrenia. Schwarcz, R., Rassoulpour, A., Wu, H.Q., Medoff, D., Tamminga, C.A., Roberts, R.C. Biol. Psychiatry (2001) [Pubmed]
  26. Metabolism of L-tryptophan to kynurenate and quinolinate in the central nervous system: effects of 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. Naritsin, D.B., Saito, K., Markey, S.P., Chen, C.Y., Heyes, M.P. J. Neurochem. (1995) [Pubmed]
  27. Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types. Heyes, M.P., Chen, C.Y., Major, E.O., Saito, K. Biochem. J. (1997) [Pubmed]
  28. The metabolism of L-tryptophan by liver cells prepared from adrenalectomized and streptozotocin-diabetic rats. Smith, S.A., Pogson, C.I. Biochem. J. (1981) [Pubmed]
  29. Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. Pérez-Navarro, E., Gavaldà, N., Gratacòs, E., Alberch, J. J. Neurochem. (2005) [Pubmed]
  30. Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington's disease. Pérez-Navarro, E., Akerud, P., Marco, S., Canals, J.M., Tolosa, E., Arenas, E., Alberch, J. Neuroscience (2000) [Pubmed]
  31. The Salmonella typhimurium nadC gene: sequence determination by use of Mud-P22 and purification of quinolinate phosphoribosyltransferase. Hughes, K.T., Dessen, A., Gray, J.P., Grubmeyer, C. J. Bacteriol. (1993) [Pubmed]
  32. Quinolinate neurotoxicity in cortical cell culture. Kim, J.P., Choi, D.W. Neuroscience (1987) [Pubmed]
  33. GABAA receptor subtype changes in the substantia nigra of the rat following quinolinate lesions in the striatum: a correlative in situ hybridization and immunohistochemical study. Nicholson, L.F., Waldvogel, H.J., Faull, R.L. Neuroscience (1996) [Pubmed]
WikiGenes - Universities