The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Mapk9  -  mitogen-activated protein kinase 9

Mus musculus

Synonyms: AI851083, JNK/SAPK alpha, JNK2, Jnk2, MAP kinase 9, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mapk9


High impact information on Mapk9

  • Our data identify TIF-IA as a downstream target of the JNK pathway and suggest a critical role of JNK2 to protect rRNA synthesis against the harmful consequences of cellular stress [5].
  • Substitution of Thr 200 by valine as well as knock-out of Jnk2 prevent inactivation and translocation of TIF-IA, leading to stress-resistance of Pol I transcription [5].
  • The addition of exogenous IFNgamma during differentiation restores IL-12-mediated Th1 polarization in the JNK2-deficient mice [6].
  • Further, the differentiation of precursor CD4+ T cells into effector Th1 but not Th2 cells is impaired in JNK2-deficient mice [6].
  • JNK2 is preferentially bound to c-Jun in unstimulated cells, thereby contributing to c-Jun degradation [7].

Chemical compound and disease context of Mapk9

  • To address the role of the JNK2 isoform in metabolic homeostasis, we intercrossed Jnk1(-/-) and Jnk2(-/-) mice and examined body weight and glucose metabolism in the resulting mutant allele combinations [3].

Biological context of Mapk9


Anatomical context of Mapk9


Associations of Mapk9 with chemical compounds


Regulatory relationships of Mapk9


Other interactions of Mapk9

  • Neural differentiation was observed in wild-type, JNK2(-/-), and JNK3(-/-) cultures but not in JNK1(-/-) EBs [21].
  • These results provide direct evidence that pfGPI induces TNF-alpha secretion through activation of MAPK pathways, including JNK2 [2].
  • Liver injury and caspase activation were similarly decreased in jnk2 null mice after GalN/TNF treatment [14].
  • The reduction of COX-2 expression was associated with greatly reduced viability of dominant-negative JNK-2-expressing cells during hypertonicity treatment [22].
  • Thus, JNK2-dependent phosphorylation of SR-A promotes uptake of lipids in macrophages, thereby regulating foam cell formation, a critical step in atherogenesis [17].

Analytical, diagnostic and therapeutic context of Mapk9


  1. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bogoyevitch, M.A. Bioessays (2006) [Pubmed]
  2. Disruption of JNK2 Decreases the Cytokine Response to Plasmodium falciparum Glycosylphosphatidylinositol In Vitro and Confers Protection in a Cerebral Malaria Model. Lu, Z., Serghides, L., Patel, S.N., Degousee, N., Rubin, B.B., Krishnegowda, G., Gowda, D.C., Karin, M., Kain, K.C. J. Immunol. (2006) [Pubmed]
  3. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Tuncman, G., Hirosumi, J., Solinas, G., Chang, L., Karin, M., Hotamisligil, G.S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  4. Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes. Jaeschke, A., Rincón, M., Doran, B., Reilly, J., Neuberg, D., Greiner, D.L., Shultz, L.D., Rossini, A.A., Flavell, R.A., Davis, R.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  5. The nucleolus as a stress sensor: JNK2 inactivates the transcription factor TIF-IA and down-regulates rRNA synthesis. Mayer, C., Bierhoff, H., Grummt, I. Genes Dev. (2005) [Pubmed]
  6. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Yang, D.D., Conze, D., Whitmarsh, A.J., Barrett, T., Davis, R.J., Rincón, M., Flavell, R.A. Immunity (1998) [Pubmed]
  7. Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Sabapathy, K., Hochedlinger, K., Nam, S.Y., Bauer, A., Karin, M., Wagner, E.F. Mol. Cell (2004) [Pubmed]
  8. c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, is essential for tumor necrosis factor alpha-induced c-Jun kinase activation and apoptosis. Liu, J., Minemoto, Y., Lin, A. Mol. Cell. Biol. (2004) [Pubmed]
  9. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Schattenberg, J.M., Singh, R., Wang, Y., Lefkowitch, J.H., Rigoli, R.M., Scherer, P.E., Czaja, M.J. Hepatology (2006) [Pubmed]
  10. Differential gene expression profiles of Jnk1- and Jnk2-deficient murine fibroblast cells. Chen, N., She, Q.B., Bode, A.M., Dong, Z. Cancer Res. (2002) [Pubmed]
  11. Impaired long-term potentiation in c-Jun N-terminal kinase 2-deficient mice. Chen, J.T., Lu, D.H., Chia, C.P., Ruan, D.Y., Sabapathy, K., Xiao, Z.C. J. Neurochem. (2005) [Pubmed]
  12. c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8(+) T cell activation. Conze, D., Krahl, T., Kennedy, N., Weiss, L., Lumsden, J., Hess, P., Flavell, R.A., Le Gros, G., Davis, R.J., Rincón, M. J. Exp. Med. (2002) [Pubmed]
  13. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Sakurai, T., Maeda, S., Chang, L., Karin, M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  14. Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. Wang, Y., Singh, R., Lefkowitch, J.H., Rigoli, R.M., Czaja, M.J. J. Biol. Chem. (2006) [Pubmed]
  15. Joint damage and inflammation in c-Jun N-terminal kinase 2 knockout mice with passive murine collagen-induced arthritis. Han, Z., Chang, L., Yamanishi, Y., Karin, M., Firestein, G.S. Arthritis Rheum. (2002) [Pubmed]
  16. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gunawan, B.K., Liu, Z.X., Han, D., Hanawa, N., Gaarde, W.A., Kaplowitz, N. Gastroenterology (2006) [Pubmed]
  17. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Ricci, R., Sumara, G., Sumara, I., Rozenberg, I., Kurrer, M., Akhmedov, A., Hersberger, M., Eriksson, U., Eberli, F.R., Becher, B., Borén, J., Chen, M., Cybulsky, M.I., Moore, K.J., Freeman, M.W., Wagner, E.F., Matter, C.M., Lüscher, T.F. Science (2004) [Pubmed]
  18. Induction of experimental autoimmune encephalomyelitis in the absence of c-Jun N-terminal kinase 2. Nicolson, K., Freland, S., Weir, C., Delahunt, B., Flavell, R.A., Bäckström, B.T. Int. Immunol. (2002) [Pubmed]
  19. Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. Kilic, U., Kilic, E., Reiter, R.J., Bassetti, C.L., Hermann, D.M. J. Pineal Res. (2005) [Pubmed]
  20. Role of Akt and c-Jun N-terminal kinase 2 in apoptosis induced by interleukin-4 deprivation. Cerezo, A., Martínez-A, C., Lanzarot, D., Fischer, S., Franke, T.F., Rebollo, A. Mol. Biol. Cell (1998) [Pubmed]
  21. Inhibited neurogenesis in JNK1-deficient embryonic stem cells. Amura, C.R., Marek, L., Winn, R.A., Heasley, L.E. Mol. Cell. Biol. (2005) [Pubmed]
  22. MAPK mediation of hypertonicity-stimulated cyclooxygenase-2 expression in renal medullary collecting duct cells. Yang, T., Huang, Y., Heasley, L.E., Berl, T., Schnermann, J.B., Briggs, J.P. J. Biol. Chem. (2000) [Pubmed]
  23. c-Jun N-terminal kinase 3 deficiency protects neurons from axotomy-induced death in vivo through mechanisms independent of c-Jun phosphorylation. Keramaris, E., Vanderluit, J.L., Bahadori, M., Mousavi, K., Davis, R.J., Flavell, R., Slack, R.S., Park, D.S. J. Biol. Chem. (2005) [Pubmed]
  24. Enzyme-linked immunosorbent assay for measurement of JNK, ERK, and p38 kinase activities. Forrer, P., Tamaskovic, R., Jaussi, R. Biol. Chem. (1998) [Pubmed]
WikiGenes - Universities