The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

MAPK9  -  mitogen-activated protein kinase 9

Homo sapiens

Synonyms: JNK-55, JNK2, JNK2A, JNK2ALPHA, JNK2B, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MAPK9

  • Lastly, inhibition of JNK using both SP and antisense oligonucleotides targeted to JNK1 and JNK2 reduced proliferation of all three breast cancer cell lines [1].
  • Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance [2].
  • To address the role of the JNK2 isoform in metabolic homeostasis, we intercrossed Jnk1(-/-) and Jnk2(-/-) mice and examined body weight and glucose metabolism in the resulting mutant allele combinations [2].
  • Similarly, reduction of JNK1 in human hepatoma cells decreased TBP expression, whereas reduction of JNK2 enhanced it [3].
  • This suggests that SAPKgamma/JNK1 and SAPKalpha/JNK2 may be important mediators of stress-induced responses in early implanting conceptuses that could mediate embryo loss [4].

High impact information on MAPK9

  • JNK2 binds c-Jun approximately 25 times more efficiently than JNK1, and as a result has a lower Km toward c-Jun than JNK1 [5].
  • JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation [5].
  • Finally, we showed that CARMA1- and Bcl10-mediated JNK2 activation had a critical role in regulating the amount of c-Jun protein [6].
  • The CARMA1-Bcl10 Signaling Complex Selectively Regulates JNK2 Kinase in the T Cell Receptor-Signaling Pathway [6].
  • Analysis of other members of the MAP kinase family showed that chondrocytes also express c-Jun NH2 terminal kinase (JNK)-1, JNK-2, and p38 proteins [7].

Biological context of MAPK9


Anatomical context of MAPK9


Associations of MAPK9 with chemical compounds


Physical interactions of MAPK9


Enzymatic interactions of MAPK9


Regulatory relationships of MAPK9

  • Knockdown of either JNK1 or JNK2 with small interfering RNA also significantly reduced the regulated PTX3 expression [20].
  • Furthermore, transfection with JNK1 and JNK2 antisense oligonucleotides markedly inhibited DOX-induced MRP1 expression [21].

Other interactions of MAPK9

  • These protein kinases correspond to alternatively spliced isoforms derived from the JNK1, JNK2 and JNK3 genes [22].
  • To investigate the growth-regulatory functions of JNK1 and JNK2, we used specific antisense oligonucleotides (AS) to inhibit their expression [8].
  • Taken together, these results indicate that JNK is required for growth of T98G cells in nonstress conditions and that p21(cip1/waf1) may contribute to the sustained growth arrest of JNK2-depleted T98G cultures [23].
  • An acute increase in IVC intraluminal pressure failed to increase the phosphorylation of ERK1-, JNK-2, or any of the p38-MAPKs in the diabetic obese Zucker rats [24].
  • Shear-induced cyclooxygenase-2 via a JNK2/c-Jun-dependent pathway regulates prostaglandin receptor expression in chondrocytic cells [25].

Analytical, diagnostic and therapeutic context of MAPK9

  • Analysis with an Affymetrix cDNA array suggested that SAPKalpha/JNK2 and 38 kDa mitogen-activated protein kinase had the highest mRNA expression measured for each of three family members [4].
  • DESIGN: Whole RNA was isolated from the tissue sources listed above and control tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to assay for the qualitative and semiquantitative presence of SAPKgamma/JNK1, SAPKalpha/JNK2, and SAPKbeta/JNK3 [4].
  • Here, we report the molecular cloning of the 55-kD form of JNK, JNK2, which exhibits 83% identity and similar regulation to JNK1 [5].
  • Moreover, systemic treatment of mice bearing established xenografts of PC3 prostate carcinoma cells with antisense JNK1 and JNK2 led to inhibition tumor growth by 57% (P < 0.002) and 80% (P < 0.001), respectively [26].
  • Thus, JNKs the relevant MAP kinases for the NGF-induced formation and elongation of PC12 cells, and this process is also supported by JNK2 and JNK3 which are commonly considered as pro-apoptotic signal transducers [27].


  1. Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Mingo-Sion, A.M., Marietta, P.M., Koller, E., Wolf, D.M., Van Den Berg, C.L. Oncogene (2004) [Pubmed]
  2. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Tuncman, G., Hirosumi, J., Solinas, G., Chang, L., Karin, M., Hotamisligil, G.S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  3. TBP is differentially regulated by c-Jun N-terminal kinase 1 (JNK1) and JNK2 through Elk-1, controlling c-Jun expression and cell proliferation. Zhong, S., Fromm, J., Johnson, D.L. Mol. Cell. Biol. (2007) [Pubmed]
  4. SAPKgamma/JNK1 and SAPKalpha/JNK2 mRNA transcripts are expressed in early gestation human placenta and mouse eggs, preimplantation embryos, and trophoblast stem cells. Zhong, W., Sun, T., Wang, Q.T., Wang, Y., Xie, Y., Johnson, A., Leach, R., Puscheck, E.E., Rappolee, D.A. Fertil. Steril. (2004) [Pubmed]
  5. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Kallunki, T., Su, B., Tsigelny, I., Sluss, H.K., Dérijard, B., Moore, G., Davis, R., Karin, M. Genes Dev. (1994) [Pubmed]
  6. The CARMA1-Bcl10 Signaling Complex Selectively Regulates JNK2 Kinase in the T Cell Receptor-Signaling Pathway. Blonska, M., Pappu, B.P., Matsumoto, R., Li, H., Su, B., Wang, D., Lin, X. Immunity (2007) [Pubmed]
  7. Selective activation of the mitogen-activated protein kinase subgroups c-Jun NH2 terminal kinase and p38 by IL-1 and TNF in human articular chondrocytes. Geng, Y., Valbracht, J., Lotz, M. J. Clin. Invest. (1996) [Pubmed]
  8. Inhibition of c-Jun N-terminal kinase 2 expression suppresses growth and induces apoptosis of human tumor cells in a p53-dependent manner. Potapova, O., Gorospe, M., Dougherty, R.H., Dean, N.M., Gaarde, W.A., Holbrook, N.J. Mol. Cell. Biol. (2000) [Pubmed]
  9. MAP kinases mediate UVB-induced phosphorylation of histone H3 at serine 28. Zhong, S., Zhang, Y., Jansen, C., Goto, H., Inagaki, M., Dong, Z. J. Biol. Chem. (2001) [Pubmed]
  10. The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Bost, F., McKay, R., Bost, M., Potapova, O., Dean, N.M., Mercola, D. Mol. Cell. Biol. (1999) [Pubmed]
  11. Activation of the c-Jun N-terminal kinase (JNK) signaling pathway is essential during PBOX-6-induced apoptosis in chronic myelogenous leukemia (CML) cells. Mc Gee, M.M., Campiani, G., Ramunno, A., Nacci, V., Lawler, M., Williams, D.C., Zisterer, D.M. J. Biol. Chem. (2002) [Pubmed]
  12. Jun N-terminal kinase pathway enhances signaling of monocytic differentiation of human leukemia cells induced by 1,25-dihydroxyvitamin D3. Wang, Q., Wang, X., Studzinski, G.P. J. Cell. Biochem. (2003) [Pubmed]
  13. Nitric oxide inhibits c-Jun N-terminal kinase 2 (JNK2) via S-nitrosylation. So, H.S., Park, R.K., Kim, M.S., Lee, S.R., Jung, B.H., Chung, S.Y., Jun, C.D., Chung, H.T. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  14. Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Sluss, H.K., Barrett, T., Dérijard, B., Davis, R.J. Mol. Cell. Biol. (1994) [Pubmed]
  15. Cross-talk between JIP3 and JIP1 during glucose deprivation: SEK1-JNK2 and Akt1 act as mediators. Song, J.J., Lee, Y.J. J. Biol. Chem. (2005) [Pubmed]
  16. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Fleming, Y., Armstrong, C.G., Morrice, N., Paterson, A., Goedert, M., Cohen, P. Biochem. J. (2000) [Pubmed]
  17. JNK phosphorylates the HSF1 transcriptional activation domain: role of JNK in the regulation of the heat shock response. Park, J., Liu, A.Y. J. Cell. Biochem. (2001) [Pubmed]
  18. Activated JNK phosphorylates the c-terminal domain of MLK2 that is required for MLK2-induced apoptosis. Phelan, D.R., Price, G., Liu, Y.F., Dorow, D.S. J. Biol. Chem. (2001) [Pubmed]
  19. Cellular stress and nucleolar function. Mayer, C., Grummt, I. Cell Cycle (2005) [Pubmed]
  20. TNFalpha-induced long pentraxin PTX3 expression in human lung epithelial cells via JNK. Han, B., Mura, M., Andrade, C.F., Okutani, D., Lodyga, M., dos Santos, C.C., Keshavjee, S., Matthay, M., Liu, M. J. Immunol. (2005) [Pubmed]
  21. Doxorubicin induces expression of multidrug resistance-associated protein 1 in human small cell lung cancer cell lines by the c-jun N-terminal kinase pathway. Shinoda, C., Maruyama, M., Fujishita, T., Dohkan, J., Oda, H., Shinoda, K., Yamada, T., Miyabayashi, K., Hayashi, R., Kawagishi, Y., Fujita, T., Matsui, S., Sugiyama, E., Muraguchi, A., Kobayashi, M. Int. J. Cancer (2005) [Pubmed]
  22. Selective interaction of JNK protein kinase isoforms with transcription factors. Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Dérijard, B., Davis, R.J. EMBO J. (1996) [Pubmed]
  23. c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. Potapova, O., Gorospe, M., Bost, F., Dean, N.M., Gaarde, W.A., Mercola, D., Holbrook, N.J. J. Biol. Chem. (2000) [Pubmed]
  24. Diabetes alters vascular mechanotransduction: pressure-induced regulation of mitogen activated protein kinases in the rat inferior vena cava. Rice, K.M., Desai, D.H., Kakarla, S.K., Katta, A., Preston, D.L., Wehner, P., Blough, E.R. Cardiovascular diabetology [electronic resource]. (2006) [Pubmed]
  25. Shear-induced cyclooxygenase-2 via a JNK2/c-Jun-dependent pathway regulates prostaglandin receptor expression in chondrocytic cells. Abulencia, J.P., Gaspard, R., Healy, Z.R., Gaarde, W.A., Quackenbush, J., Konstantopoulos, K. J. Biol. Chem. (2003) [Pubmed]
  26. C-Jun NH(2)-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Yang, Y.M., Bost, F., Charbono, W., Dean, N., McKay, R., Rhim, J.S., Depatie, C., Mercola, D. Clin. Cancer Res. (2003) [Pubmed]
  27. c-Jun N-terminal kinases (JNKs) and the cytoskeleton--functions beyond neurodegeneration. Gelderblom, M., Eminel, S., Herdegen, T., Waetzig, V. Int. J. Dev. Neurosci. (2004) [Pubmed]
WikiGenes - Universities