The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

patulin     2-hydroxy-3,7- dioxabicyclo[4.3.0]nona- 5,9...

Synonyms: Clavacin, Clavatin, Expansin, Gigantin, Leucopin, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of patulin

 

Psychiatry related information on patulin

  • When the percentage of patulin remaining was plotted versus reaction time, apparent first-order reaction plots were obtained [6].
 

High impact information on patulin

 

Chemical compound and disease context of patulin

 

Biological context of patulin

 

Anatomical context of patulin

 

Associations of patulin with other chemical compounds

 

Gene context of patulin

  • Mycotoxin patulin activates the p38 kinase and JNK signaling pathways in human embryonic kidney cells [29].
  • Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin [30].
  • Furthermore, 3 ng/mL patulin caused a significant increase of IL-4 but a significant suppression of IFN-gamma [31].
  • For IL-4 release the corresponding ID(50) values were 21.6 microg/mL citrinin, 82.8 ng/mL gliotoxin, and 243.2 ng/mL patulin [31].
  • Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges [32].
 

Analytical, diagnostic and therapeutic context of patulin

References

  1. A new competitive fluorescence assay for the detection of patulin toxin. de Champdoré, M., Bazzicalupo, P., De Napoli, L., Montesarchio, D., Di Fabio, G., Cocozza, I., Parracino, A., Rossi, M., D'Auria, S. Anal. Chem. (2007) [Pubmed]
  2. Identification of phyllostine as an intermediate of the patulin pathway in Penicillium urticae. Sekiguchi, J., Gaucher, G.M. Biochemistry (1978) [Pubmed]
  3. Comparison of the toxicities of patulin and patulin adducts formed with cysteine. Lindroth, S., von Wright, A. Appl. Environ. Microbiol. (1978) [Pubmed]
  4. DNA-damaging activity of patulin in Escherichia coli. Lee, K.S., Röschenthaler, R.J. Appl. Environ. Microbiol. (1986) [Pubmed]
  5. Biotransformation of Patulin by Gluconobacter oxydans. Ricelli, A., Baruzzi, F., Solfrizzo, M., Morea, M., Fanizzi, F.P. Appl. Environ. Microbiol. (2007) [Pubmed]
  6. Stability of patulin at ph 6.0-8.0 and 25 degrees c. Brackett, R.E., Marth, E.H. Zeitschrift für Lebensmittel-Untersuchung und -Forschung. (1979) [Pubmed]
  7. Loosening of plant cell walls by expansins. Cosgrove, D.J. Nature (2000) [Pubmed]
  8. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Choi, D., Lee, Y., Cho, H.T., Kende, H. Plant Cell (2003) [Pubmed]
  9. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Cho, H.T., Cosgrove, D.J. Plant Cell (2002) [Pubmed]
  10. Strand scissions of DNA by patulin in the presence of reducing agents and cupric ions. Lee, K.S., Röschenthaler, R. J. Antibiot. (1987) [Pubmed]
  11. Induction of micronuclei and chromosomal aberrations by the mycotoxin patulin in mammalian cells: role of ascorbic acid as a modulator of patulin clastogenicity. Alves, I., Oliveira, N.G., Laires, A., Rodrigues, A.S., Rueff, J. Mutagenesis (2000) [Pubmed]
  12. Detoxification of patulin by adduct formation with cysteine. Lindroth, S., von Wright, A. J. Environ. Pathol. Toxicol. Oncol. (1990) [Pubmed]
  13. Mycotoxin bioassay, using Bacillus stearothermophilus. Reiss, J. Journal - Association of Official Analytical Chemists. (1975) [Pubmed]
  14. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Reinhardt, D., Wittwer, F., Mandel, T., Kuhlemeier, C. Plant Cell (1998) [Pubmed]
  15. Molecular cloning and sequence analysis of expansins--a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Shcherban, T.Y., Shi, J., Durachko, D.M., Guiltinan, M.J., McQueen-Mason, S.J., Shieh, M., Cosgrove, D.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  16. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Cho, H.T., Cosgrove, D.J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  17. Plant cell enlargement and the action of expansins. Cosgrove, D.J. Bioessays (1996) [Pubmed]
  18. New genes and new biological roles for expansins. Cosgrove, D.J. Curr. Opin. Plant Biol. (2000) [Pubmed]
  19. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Ruan, Y.L., Llewellyn, D.J., Furbank, R.T. Plant Cell (2001) [Pubmed]
  20. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Wieczorek, K., Golecki, B., Gerdes, L., Heinen, P., Szakasits, D., Durachko, D.M., Cosgrove, D.J., Kreil, D.P., Puzio, P.S., Bohlmann, H., Grundler, F.M. Plant J. (2006) [Pubmed]
  21. Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Marga, F., Grandbois, M., Cosgrove, D.J., Baskin, T.I. Plant J. (2005) [Pubmed]
  22. Toxicity of mycotoxins for the rat pulmonary macrophage in vitro. Sorenson, W.G., Gerberick, G.F., Lewis, D.M., Castranova, V. Environ. Health Perspect. (1986) [Pubmed]
  23. Inhibition of translation in reticulocyte lysate by the mycotoxin patulin. Hatey, F., Gaye, P. FEBS Lett. (1978) [Pubmed]
  24. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. McQueen-Mason, S., Cosgrove, D.J. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  25. Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Catalá, C., Rose, J.K., Bennett, A.B. Plant Physiol. (2000) [Pubmed]
  26. Isoepoxydon, a new metabolite of the patulin pathway in Penicillium urticae. Sekiguchi, J., Gaucher, G.M. Biochem. J. (1979) [Pubmed]
  27. Produciton and biological activity of patulin and citrinin from Penicillium expansum. Ciegler, A., Vesonder, R.F., Jackson, L.K. Appl. Environ. Microbiol. (1977) [Pubmed]
  28. Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. Zhao, Q., Yuan, S., Wang, X., Zhang, Y., Zhu, H., Lu, C. Plant Physiol. (2008) [Pubmed]
  29. Mycotoxin patulin activates the p38 kinase and JNK signaling pathways in human embryonic kidney cells. Liu, B.H., Wu, T.S., Yu, F.Y., Wang, C.H. Toxicol. Sci. (2006) [Pubmed]
  30. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin. Wu, T.S., Yu, F.Y., Su, C.C., Kan, J.C., Chung, C.P., Liu, B.H. Toxicol. Appl. Pharmacol. (2005) [Pubmed]
  31. The mycotoxins citrinin, gliotoxin, and patulin affect interferon-gamma rather than interleukin-4 production in human blood cells. Wichmann, G., Herbarth, O., Lehmann, I. Environ. Toxicol. (2002) [Pubmed]
  32. Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Baluska, F., Salaj, J., Mathur, J., Braun, M., Jasper, F., Samaj, J., Chua, N.H., Barlow, P.W., Volkmann, D. Dev. Biol. (2000) [Pubmed]
  33. Expansins in growing tomato leaves. Keller, E., Cosgrove, D.J. Plant J. (1995) [Pubmed]
  34. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Wu, Y., Sharp, R.E., Durachko, D.M., Cosgrove, D.J. Plant Physiol. (1996) [Pubmed]
  35. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Vreeburg, R.A., Benschop, J.J., Peeters, A.J., Colmer, T.D., Ammerlaan, A.H., Staal, M., Elzenga, T.M., Staals, R.H., Darley, C.P., McQueen-Mason, S.J., Voesenek, L.A. Plant J. (2005) [Pubmed]
 
WikiGenes - Universities