The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Fast Neutrons

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Fast Neutrons


High impact information on Fast Neutrons

  • We have identified 10 additional alleles of rga from a fast-neutron mutagenized ga1-3 population and used them to isolate the RGA gene by genomic subtraction [5].
  • A CHI allele, generated by fast-neutron irradiation, consisted of an inversion within the gene [6].
  • While direct detection of small mutations, such as an ethyl-methane sulfonate derived single base substitutions, is limited by array coverage and sensitivity, large deletions such as those that can be caused by fast neutrons are easily detected [7].
  • The effect of Adriamycin (doxorubicin hydrochloride) (10 mg/kg intraperitoneally) on the response of mouse gut to irradiation with 6-MVp photons or fast neutrons (67 MeV p--Be), was assessed with the six-day death endpoint [8].
  • About 60,000 IR64 mutants have been generated by mutagenesis using chemicals (diepoxybutane and ethylmethanesulfonate) and irradiation (fast neutron and gamma ray) [9].

Biological context of Fast Neutrons


Anatomical context of Fast Neutrons


Associations of Fast Neutrons with chemical compounds


Gene context of Fast Neutrons

  • p53 and cell-cycle-regulated protein expression in small intestinal cells after fast-neutron irradiation in mice [25].
  • In addition, cyclin B1, cyclin D, and cyclin E were overexpressed in intestinal cells after fast-neutron irradiation and their immunoreactivities were increased strongly in round and oval cells of laminar propria in villi core and crypts [25].
  • In order to improve the dose calculation, and thus to use the fast neutron beam for other applications (e.g., Boron Neutron Capture Enhancement of Fast Neutron Therapy), in this work we aim to develop a new TPS [26].
  • The induction of potentially lethal damage and potentially mutagenic damage expressed by hypertonic salt treatment in late S-phase V79 cells after exposure to 46-MeV fast neutrons and 50-kVp X rays has been studied [27].
  • Proliferation tests and clonogenic assays showed that fast neutrons can nevertheless kill WTK1 and NH32 cells efficiently [28].

Analytical, diagnostic and therapeutic context of Fast Neutrons


  1. Neutron radiation enhances cisplatin cytotoxicity independently of apoptosis in human head and neck carcinoma cells. Kim, H.E., Krug, M.A., Han, I., Ensley, J., Yoo, G.H., Forman, J.D., Kim, H.R. Clin. Cancer Res. (2000) [Pubmed]
  2. Fast neutron therapy for soft tissue sarcoma. Pickering, D.G., Stewart, J.S., Rampling, R., Errington, R.D., Stamp, G., Chia, Y. Int. J. Radiat. Oncol. Biol. Phys. (1987) [Pubmed]
  3. Combined cyclotron fast-neutron and BCNU therapy in a rat brain-tumor model. Spence, A.M., Geraci, J.P. J. Neurosurg. (1981) [Pubmed]
  4. Micronucleus induction in mammalian cell cultures treated with ionizing radiations. Bertsche, U. Radiation and environmental biophysics. (1985) [Pubmed]
  5. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Silverstone, A.L., Ciampaglio, C.N., Sun, T. Plant Cell (1998) [Pubmed]
  6. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Shirley, B.W., Hanley, S., Goodman, H.M. Plant Cell (1992) [Pubmed]
  7. Rapid array mapping of circadian clock and developmental mutations in Arabidopsis. Hazen, S.P., Borevitz, J.O., Harmon, F.G., Pruneda-Paz, J.L., Schultz, T.F., Yanovsky, M.J., Liljegren, S.J., Ecker, J.R., Kay, S.A. Plant Physiol. (2005) [Pubmed]
  8. A comparative study of the effect of adriamycin on the sensitivity of mice to whole-body irradiation with 6-MVp photons or fast neutrons (67 MeV p--Be). Colman, M., Zabilansky, E., Redpath, J.L. Radiology. (1980) [Pubmed]
  9. Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Wu, J.L., Wu, C., Lei, C., Baraoidan, M., Bordeos, A., Madamba, M.R., Ramos-Pamplona, M., Mauleon, R., Portugal, A., Ulat, V.J., Bruskiewich, R., Wang, G., Leach, J., Khush, G., Leung, H. Plant Mol. Biol. (2005) [Pubmed]
  10. Relative biological effectiveness (RBE) of p(26) + Be neutrons from the King Faisal Specialist Hospital and Research Centre CS-30 cyclotron measured by testis weight loss. Feola, J.M., Aissi, A., Greer, W., el-Sayed, R., Clubb, B., el-Akkad, S. Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]. (1989) [Pubmed]
  11. DNA radiolysis by fast neutrons. II. Oxygen, thiols and ionic strength effects. Spotheim-Maurizot, M., Franchet, J., Sabattier, R., Charlier, M. Int. J. Radiat. Biol. (1991) [Pubmed]
  12. Isolation and characterization of rice mutants compromised in Xa21-mediated resistance to X. oryzae pv. oryzae. Wang, G.L., Wu, C., Zeng, L., He, C., Baraoidan, M., de Assis Goes da Silva, F., Williams, C.E., Ronald, P.C., Leung, H. Theor. Appl. Genet. (2004) [Pubmed]
  13. On the expressivity of aberration hot spots after treatment with mutagens showing delayed or non-delayed effects. Schubert, I., Rieger, R. Mutat. Res. (1977) [Pubmed]
  14. Repair of potentially lethal damage in yeast induced by fast neutrons. Hannan, M.A., Paul, M., Gibson, D.P., Al-Watban, F.A. Mutat. Res. (1985) [Pubmed]
  15. Identification of human in vitro cell lines with greater intrinsic cellular radiosensitivity to 62.5 MeV (p-->Be+) neutrons than 4 MeV photons. Warenius, H.M., Britten, R.A., Browning, P.G., Morton, I.E., Peacock, J.H. Int. J. Radiat. Oncol. Biol. Phys. (1994) [Pubmed]
  16. Dependence of mutation induction on fast-neutron energy in a human epithelial teratocarcinoma cell line (P3). Sharma, S., Hill, C.K. Radiat. Res. (1996) [Pubmed]
  17. In vivo protection by cimetidine against fast neutron-induced micronuclei in mouse bone marrow cells. Mozdarani, H., Khoshbin-Khoshnazar, A.R. Cancer Lett. (1998) [Pubmed]
  18. Survival responses and potentially lethal damage repair of normal 10T1/2 and its transformed TCL 15 cells after irradiation with 43 MeV proton produced neutrons. Suzuki, S., Ngo, F.Q., Koumoundourous, I., Tourdot, K.R., Schroy, C.B., Roberts, W.K. Acta oncologica (Stockholm, Sweden) (1988) [Pubmed]
  19. Effects of split fast neutron doses on the liver cells of albino Swiss mice. Abdelmeguid, N., Ramadan, A.A., el-Khatib, A.M. Folia morphologica. (1990) [Pubmed]
  20. Response of the R3327-AT1 Dunning prostate tumor to fast neutrons and cobalt-60. Hahn, E.W., Wolber, G., Bak, M., Hoever, K.H., Gerlach, L., Volm, M., Lorenz, W.J. Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]. (1989) [Pubmed]
  21. The radiosensitivity of quiescent cell populations in murine solid tumors in irradiation with fast neutrons. Masunaga, S., Ono, K., Akuta, K., Akaboshi, M., Abe, M., Ando, K., Koike, S. Int. J. Radiat. Oncol. Biol. Phys. (1994) [Pubmed]
  22. Protection of cultured Chinese hamster ovary cells by the aminothiol WR-255591 from the lethal and DNA-damaging effects of fast neutrons. vanAnkeren, S.C., Milas, L., Murray, D. Int. J. Radiat. Oncol. Biol. Phys. (1989) [Pubmed]
  23. Optimum fractionation of the C3H mouse mammary carcinoma using x-rays, the hypoxic-cell radiosensitizer Ro-07-0582, or fast neutrons. Fowler, J.F., Sheldon, P.W., Denekamp, J., Field, S.B. Int. J. Radiat. Oncol. Biol. Phys. (1976) [Pubmed]
  24. Direct effect in DNA radiolysis. Boron neutron capture enhancement of radiolysis in a medical fast-neutron beam. Sèche, E., Sabattier, R., Bajard, J.C., Blondiaux, G., Breteau, N., Spotheim-Maurizot, M., Charlier, M. Radiat. Res. (2002) [Pubmed]
  25. p53 and cell-cycle-regulated protein expression in small intestinal cells after fast-neutron irradiation in mice. Jee, Y.H., Jeong, W.I., Kim, T.H., Hwang, I.S., Ahn, M.J., Joo, H.G., Hong, S.H., Jeong, K.S. Mol. Cell. Biochem. (2005) [Pubmed]
  26. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system. Bourhis-Martin, E., Meissner, P., Rassow, J., Baumhoer, W., Schmidt, R., Sauerwein, W. Medical physics. (2002) [Pubmed]
  27. Repair of potentially mutagenic damage and radiation quality. Zhu, L.X., Hill, C.K. Radiat. Res. (1991) [Pubmed]
  28. Involvement of TP53 in apoptosis induced in human lymphoblastoid cells by fast neutrons. Coelho, D., Fischer, B., Holl, V., Jung, G.M., Dufour, P., Bergerat, J.P., Denis, J.M., Gueulette, J., Bischoff, P. Radiat. Res. (2002) [Pubmed]
  29. Treatment of stage IIIB cervical cancer with Californium-252 fast-neutron brachytherapy and external photon therapy. Gallion, H.H., Maruyama, Y., van Nagell, J.R., Donaldson, E.S., Rowley, K.C., Yoneda, J., Beach, J.L., Powell, D.E., Kryscio, R.J. Cancer (1987) [Pubmed]
  30. The MEDICYC programme. Mandrillon, P., Lalanne, C.M. Bulletin du cancer. (1986) [Pubmed]
  31. Alanine and TLD coupled detectors for fast neutron dose measurements in neutron capture therapy (NCT). Cecilia, A., Baccaro, S., Cemmi, A., Colli, V., Gambarini, G., Rosi, G., Scolari, L. Radiation protection dosimetry. (2004) [Pubmed]
  32. Mouse testis weight loss and survival of differentiated spermatogonia following irradiation with 250 kV X-rays and 5.5 MeV fast neutrons. Gasińska, A. Neoplasma (1985) [Pubmed]
WikiGenes - Universities