The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Optic Chiasm

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Optic Chiasm


High impact information on Optic Chiasm


Chemical compound and disease context of Optic Chiasm


Biological context of Optic Chiasm

  • Here, we show that the zinc finger transcription factor Zic2, a vertebrate homolog of the Drosophila gene odd-paired, is expressed in RGCs with an uncrossed trajectory during the period when this subpopulation grows from the ventrotemporal retina toward the optic chiasm [7].
  • We show that bel(Ihx2) function is required for patterning in the ventral forebrain and eye, and that loss of bel function leads to alterations in regulatory gene expression, perturbations in axon guidance factors, and the absence of an optic chiasm and forebrain commissures [13].
  • As much of the increased ipsilateral projection in Foxg1-/- embryos arises from temporal RGCs that are unlikely to have an autonomous requirement for Foxg1, we propose that the phenotype reflects at least in part a requirement for Foxg1 outwith the RGCs themselves, most likely at the optic chiasm [14].
  • METHODS: A 34-year-old woman with a history of strabismus and absent cutaneous pigment underwent comprehensive ophthalmic examination, visual-evoked potentials to detect altered optic decussation, and molecular analysis [15].

Anatomical context of Optic Chiasm


Associations of Optic Chiasm with chemical compounds

  • Evidence from labeling growing retinal axons with the carbocyanine dye Dil in mouse embryos indicates that the two subpopulations diverge at a zone along the midline of the optic chiasm [21].
  • Axon routing at the optic chiasm after enzymatic removal of chondroitin sulfate in mouse embryos [22].
  • An extensive network of 5-HT neurones appeared gradually, with a substantial subset crossing to the opposite side of the brain through the developing optic chiasma [23].
  • Using the whole-cell patch technique, we first demonstrated that AMPA currents elicited by either local AMPA application or optic chiasm stimulation were augmented by aniracetam in the neurons of the SCN [24].
  • Basal hypothalamic deafferentation extending from the posterior border of the optic chiasm to the mid-mammillary bodies resulted in depression of plasma TSH, thyroxine (T4), and triiodothyronine (T3) concentration to 50% of normal controls within 7 days [25].

Gene context of Optic Chiasm

  • Foxg1 is also expressed at the optic chiasm [14].
  • Foxd1 is required for proper formation of the optic chiasm [26].
  • Six6 expression was detected in the neural retina, the optic chiasma and optic stalk, but not in the lens [27].
  • The suprachiasmatic preoptic nucleus (PSCh), a small group of cells located ventral to the AVPv just dorsal to the optic chiasm, contained high densities of alpha-MSH- and ACTH-immunoreactive fibers, as well as substantial numbers of fibers containing catecholamines or NPY [28].
  • Hybridization histochemistry revealed the presence of both TGF alpha and EGFR mRNAs in cells scattered throughout the hypothalamus, but more predominantly in the median eminence, suprachiasmatic nuclei, optic chiasm and cells along the wall of the third ventricle [29].

Analytical, diagnostic and therapeutic context of Optic Chiasm


  1. Dural enhancement and cerebral displacement secondary to intracranial hypotension. Fishman, R.A., Dillon, W.P. Neurology (1993) [Pubmed]
  2. Extrinsic modulation of retinal ganglion cell projections: analysis of the albino mutation in pigmentation mosaic mice. Rice, D.S., Goldowitz, D., Williams, R.W., Hamre, K., Johnson, P.T., Tan, S.S., Reese, B.E. Dev. Biol. (1999) [Pubmed]
  3. High-resolution anatomic, diffusion tensor, and magnetization transfer magnetic resonance imaging of the optic chiasm at 3T. Vinogradov, E., Degenhardt, A., Smith, D., Marquis, R., Vartanian, T.K., Kinkel, P., Maier, S.E., Hackney, D.B., Lenkinski, R.E. Journal of magnetic resonance imaging : JMRI. (2005) [Pubmed]
  4. Carboplatin for the treatment of children with newly diagnosed optic chiasm gliomas: a phase II study. Aquino, V.M., Fort, D.W., Kamen, B.A. J. Neurooncol. (1999) [Pubmed]
  5. Molecular mechanisms of optic axon guidance. Inatani, M. Naturwissenschaften (2005) [Pubmed]
  6. Magnitude of binocular vision controlled by islet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding. Pak, W., Hindges, R., Lim, Y.S., Pfaff, S.L., O'Leary, D.D. Cell (2004) [Pubmed]
  7. Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Herrera, E., Brown, L., Aruga, J., Rachel, R.A., Dolen, G., Mikoshiba, K., Brown, S., Mason, C.A. Cell (2003) [Pubmed]
  8. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Strittmatter, S.M., Fankhauser, C., Huang, P.L., Mashimo, H., Fishman, M.C. Cell (1995) [Pubmed]
  9. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Williams, S.E., Mann, F., Erskine, L., Sakurai, T., Wei, S., Rossi, D.J., Gale, N.W., Holt, C.E., Mason, C.A., Henkemeyer, M. Neuron (2003) [Pubmed]
  10. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Plump, A.S., Erskine, L., Sabatier, C., Brose, K., Epstein, C.J., Goodman, C.S., Mason, C.A., Tessier-Lavigne, M. Neuron (2002) [Pubmed]
  11. Ghost-cell tumor of the optic chiasm. Primary CNS lymphoma. Gray, R.S., Abrahams, J.J., Hufnagel, T.J., Kim, J.H., Lesser, R.L., Spencer, D.D. Journal of clinical neuro-ophthalmology. (1989) [Pubmed]
  12. Optic chiasm glioma associated with inappropriate secretion of antidiuretic hormone, cerebral ischemia, nonobstructive hydrocephalus and chronic ascites following ventriculoperitoneal shunting. Tang, T.T., Whelan, H.T., Meyer, G.A., Strother, D.R., Blank, E.L., Camitta, B.M., Franciosi, R.A. Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery. (1991) [Pubmed]
  13. belladonna/(Ihx2) is required for neural patterning and midline axon guidance in the zebrafish forebrain. Seth, A., Culverwell, J., Walkowicz, M., Toro, S., Rick, J.M., Neuhauss, S.C., Varga, Z.M., Karlstrom, R.O. Development (2006) [Pubmed]
  14. The winged helix transcription factor Foxg1 facilitates retinal ganglion cell axon crossing of the ventral midline in the mouse. Pratt, T., Tian, N.M., Simpson, T.I., Mason, J.O., Price, D.J. Development (2004) [Pubmed]
  15. Diagnosis of oculocutaneous albinism with molecular analysis. Summers, C.G., Oetting, W.S., King, R.A. Am. J. Ophthalmol. (1996) [Pubmed]
  16. Randomized retinal ganglion cell axon routing at the optic chiasm of GAP-43-deficient mice: association with midline recrossing and lack of normal ipsilateral axon turning. Sretavan, D.W., Kruger, K. J. Neurosci. (1998) [Pubmed]
  17. PDGF and its receptors in the developing rodent retina and optic nerve. Mudhar, H.S., Pollock, R.A., Wang, C., Stiles, C.D., Richardson, W.D. Development (1993) [Pubmed]
  18. Immunocytochemical localization of vasoactive intestinal polypeptide-containing cells and processes in the suprachiasmatic nucleus of the rat: light and electron microscopic analysis. Card, J.P., Brecha, N., Karten, H.J., Moore, R.Y. J. Neurosci. (1981) [Pubmed]
  19. Regional localization and subcellular compartmentalization of thyrotropin-releasing hormone in adult human brain. Parker, C.R., Porter, J.C. J. Neurochem. (1983) [Pubmed]
  20. Immunocytochemical colocalization of hypothalamic progestin receptors and tyrosine hydroxylase in steroid-treated monkeys. Kohama, S.G., Freesh, F., Bethea, C.L. Endocrinology (1992) [Pubmed]
  21. Retinal axon pathfinding in the optic chiasm: divergence of crossed and uncrossed fibers. Godement, P., Salaün, J., Mason, C.A. Neuron (1990) [Pubmed]
  22. Axon routing at the optic chiasm after enzymatic removal of chondroitin sulfate in mouse embryos. Chung, K.Y., Taylor, J.S., Shum, D.K., Chan, S.O. Development (2000) [Pubmed]
  23. The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo. Messenger, N.J., Warner, A.E. Development (1989) [Pubmed]
  24. Facilitation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor transmission in the suprachiasmatic nucleus by aniracetam enhances photic responses of the biological clock in rodents. Moriya, T., Ikeda, M., Teshima, K., Hara, R., Kuriyama, K., Yoshioka, T., Allen, C.N., Shibata, S. J. Neurochem. (2003) [Pubmed]
  25. The effect of basal hypothalamic isolation on pituitary-thyroid activity and the response to propylthiouracil. Fukuda, H., Greer, M.A. Endocrinology (1977) [Pubmed]
  26. Foxd1 is required for proper formation of the optic chiasm. Herrera, E., Marcus, R., Li, S., Williams, S.E., Erskine, L., Lai, E., Mason, C. Development (2004) [Pubmed]
  27. Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Jean, D., Bernier, G., Gruss, P. Mech. Dev. (1999) [Pubmed]
  28. The distribution of neurotransmitter-specific cells and fibers in the anteroventral periventricular nucleus: implications for the control of gonadotropin secretion in the rat. Simerly, R.B., Swanson, L.W. Brain Res. (1987) [Pubmed]
  29. Developmental expression of the genes encoding transforming growth factor alpha and its receptor in the hypothalamus of female rhesus macaques. Ma, Y.J., Costa, M.E., Ojeda, S.R. Neuroendocrinology (1994) [Pubmed]
  30. Actions of excitatory amino acid antagonists on geniculo-cortical transmission in the cat's visual cortex. Hagihara, K., Tsumoto, T., Sato, H., Hata, Y. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1988) [Pubmed]
  31. Bagolini striated glasses test and lesions of the optic chiasm. Hirai, T., Kondo, M., Takai, Y., Ota, Y., Sato, M., Miyake, Y. Binocular vision & strabismus quarterly. (2005) [Pubmed]
WikiGenes - Universities