The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Median Eminence

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Median Eminence

 

Psychiatry related information on Median Eminence

 

High impact information on Median Eminence

 

Chemical compound and disease context of Median Eminence

 

Biological context of Median Eminence

  • The tight link between GAL and LHRH neuronal systems is strengthened by the observation that during the estrous cycle of the rat, rGAL and LHRH contents in the median eminence show an identical profile (r = 1.00) [18].
  • Our previous studies have shown that stimulation of the anteroventral third ventricle (AV3V) region of the brain increases atrial natriuretic peptide (ANP) release, whereas lesions of the AV3V region or median eminence of the tuber cinereum block the release of ANP caused by blood volume expansion [19].
  • The presence of putative melatonin receptors in the suprachiasmatic nuclei and median eminence of these rodent species suggests that these brain regions are important loci for melatonin effects on circadian rhythms and reproduction [20].
  • The mRNA encoding vasopressin has recently been documented within the magnocellular hypothalamo-neurohypophyseal projections of the rat such as the median eminence (ME) and the posterior pituitary (PP), suggesting the possibility of its axonal transport [21].
  • The six classic phenotypes were identified in histological sections with rabbit antisera to neurotransmitters (or related enzymes), nuclear bromodeoxyuridine was detected with a mouse monoclonal antibody, and an axonal projection to the median eminence was determined with the fluorescent retrograde tracer fast blue [22].
 

Anatomical context of Median Eminence

 

Associations of Median Eminence with chemical compounds

 

Gene context of Median Eminence

  • This may reflect lateralized hypothalamic and/or suprahypothalamic function resulting in CRH-responsive lateralized secretion of AVP from parvocellular and/or magnocellular axons in the median eminence and the posterior pituitary [31].
  • Exogenous administration of leptin to fasted animals restored PC1 levels in the median eminence (ME) and the PVN to approximately the level found in fed control animals [32].
  • CRF receptor expression in hypothalamic neurosecretory structures, including the paraventricular nucleus and median eminence, is generally low [33].
  • Moreover, B or T MPOA implants also decreased resting-state levels of AVP but not CRH in the median eminence, and these effects were correlated with ACTH responses to restraint [34].
  • Infundibular nucleus (including median eminence) NPY ICC staining or mRNA expression, and AGRP ICC staining, increased with premorbid illness duration [35].
 

Analytical, diagnostic and therapeutic context of Median Eminence

References

  1. Transforming growth factor-alpha gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Ma, Y.J., Junier, M.P., Costa, M.E., Ojeda, S.R. Neuron (1992) [Pubmed]
  2. Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. Leibowitz, S.F., Akabayashi, A., Wang, J. J. Neurosci. (1998) [Pubmed]
  3. Concomitant secretion of adrenocorticotropin, beta-endorphin, and gamma-melanotropin from perfused pituitary tumor cells of Cushing's disease: effects of lysine vasopressin, rat median eminence extracts, thyrotropin-releasing hormone, and luteinizing hormone-releasing hormone. Oki, S., Nakao, K., Tanaka, I., Horii, K., Nakai, Y., Shimbo, S., Watanabe, M., Nakane, T., Kuwayama, A., Kageyama, N., Imura, H. J. Clin. Endocrinol. Metab. (1981) [Pubmed]
  4. Effect of hypothalamic extract and other factors on release of adrenocorticotropin from and adenosine 3',5'-monophosphate levels in dispersed nonpituitary tumor cells. Hirata, Y., Yoshimi, H., Matsukura, S., Imura, H. J. Clin. Endocrinol. Metab. (1979) [Pubmed]
  5. Effects of hyperprolactinemia on plasma prolactin and glucose and on local cerebral glucose utilization. Selmanoff, M., Walovitch, R.C., Walker, G.E., London, E.D. J. Neurochem. (1987) [Pubmed]
  6. Starvation-induced changes in the hypothalamic content of prothyrotrophin-releasing hormone (proTRH) mRNA and the hypothalamic release of proTRH-derived peptides: role of the adrenal gland. van Haasteren, G.A., Linkels, E., Klootwijk, W., van Toor, H., Rondeel, J.M., Themmen, A.P., de Jong, F.H., Valentijn, K., Vaudry, H., Bauer, K. J. Endocrinol. (1995) [Pubmed]
  7. Atrial natriuretic peptide-induced suppression of basal and dehydration-induced vasopressin secretion is not mediated by hypothalamic tuberohypophysial or tuberoinfundibular dopaminergic neurons. Manzanares, J., Lookingland, K.J., Moore, K.E. Brain Res. (1990) [Pubmed]
  8. Serotonin and norepinephrine uptake in discrete brain regions during the pregnant mare serum (PMS) induced estrous cycle in the rat. Meyer, D.C. Chronobiologia. (1983) [Pubmed]
  9. Changes in hypothalamic preproenkephalin A mRNA following stress and opiate withdrawal. Lightman, S.L., Young, W.S. Nature (1987) [Pubmed]
  10. Magnocellular axons in passage through the median eminence release vasopressin. Holmes, M.C., Antoni, F.A., Aguilera, G., Catt, K.J. Nature (1986) [Pubmed]
  11. Immunocytochemical localization in rat brain of a prolactin release-inhibiting sequence of gonadotropin-releasing hormone prohormone. Phillips, H.S., Nikolics, K., Branton, D., Seeburg, P.H. Nature (1985) [Pubmed]
  12. Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Whitnall, M.H., Mezey, E., Gainer, H. Nature (1985) [Pubmed]
  13. Characterization of in vitro dopamine synthesis in the median eminence of rats with haloperidol-induced hyperprolactinemia and bromocriptine-induced hypoprolactinemia. Arita, J., Kimura, F. Endocrinology (1986) [Pubmed]
  14. Hypoglycemia enhances turnover of corticotropin-releasing factor and of vasopressin in the zona externa of the rat median eminence. Berkenbosch, F., De Goeij, D.C., Tilders, F.J. Endocrinology (1989) [Pubmed]
  15. Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Yirmiya, R., Pollak, Y., Barak, O., Avitsur, R., Ovadia, H., Bette, M., Weihe, E., Weidenfeld, J. Neuropsychopharmacology (2001) [Pubmed]
  16. Prolactin regulation of tuberoinfundibular dopaminergic neurons: immunoneutralization studies. Hentschel, K., Fleckenstein, A.E., Toney, T.W., Lawson, D.M., Moore, K.E., Lookingland, K.J. Brain Res. (2000) [Pubmed]
  17. GABAergic biochemical parameters of the tuberoinfundibular neurons following chronic hyperprolactinemia. Felman, K., Tappaz, M. Neuroendocrinology (1989) [Pubmed]
  18. Galanin: a hypothalamic-hypophysiotropic hormone modulating reproductive functions. López, F.J., Merchenthaler, I., Ching, M., Wisniewski, M.G., Negro-Vilar, A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  19. Carotid-aortic and renal baroreceptors mediate the atrial natriuretic peptide release induced by blood volume expansion. Antunes-Rodrigues, J., Machado, B.H., Andrade, H.A., Mauad, H., Ramalho, M.J., Reis, L.C., Silva-Netto, C.R., Favaretto, A.L., Gutkowska, J., McCann, S.M. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  20. Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. Weaver, D.R., Rivkees, S.A., Reppert, S.M. J. Neurosci. (1989) [Pubmed]
  21. Aggregation of vasopressin mRNA in a subset of axonal swellings of the median eminence and posterior pituitary: light and electron microscopic evidence. Trembleau, A., Morales, M., Bloom, F.E. J. Neurosci. (1994) [Pubmed]
  22. Spatiotemporal patterns of secretomotor neuron generation in the parvicellular neuroendocrine system. Markakis, E.A., Swanson, L.W. Brain Res. Brain Res. Rev. (1997) [Pubmed]
  23. Specific depletion of immunoreactive growth hormone-releasing factor by monosodium glutamate in rat median eminence. Bloch, B., Ling, N., Benoit, R., Wehrenberg, W.B., Guillemin, R. Nature (1984) [Pubmed]
  24. Central noradrenergic neurones concentrate 3H-oestradiol. Sar, M., Stumpf, W.E. Nature (1981) [Pubmed]
  25. Immunohistochemical localization in the rat brain of the precursor for thyrotropin-releasing hormone. Jackson, I.M., Wu, P., Lechan, R.M. Science (1985) [Pubmed]
  26. Depolarization- and ionophore-induced release of octacosa somatostatin from stalk median eminence synaptosomes. Kewley, C.F., Millar, R.P., Berman, M.C., Schally, A.V. Science (1981) [Pubmed]
  27. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Seeburg, P.H., Adelman, J.P. Nature (1984) [Pubmed]
  28. Fluorescence-immunocytochemistry: simultaneous localization of catecholamines and gonadotropin-releasing hormone. McNeill, T.H., Sladek, J.R. Science (1978) [Pubmed]
  29. Excitatory amino acids: function and significance in reproduction and neuroendocrine regulation. Brann, D.W., Mahesh, V.B. Frontiers in neuroendocrinology. (1994) [Pubmed]
  30. Localization of hypophysiotropic peptides and other biologically active peptides within the brain. Elde, R., Hökfelt, T. Annu. Rev. Physiol. (1979) [Pubmed]
  31. Inferior petrosal sinus sampling in healthy subjects reveals a unilateral corticotropin-releasing hormone-induced arginine vasopressin release associated with ipsilateral adrenocorticotropin secretion. Kalogeras, K.T., Nieman, L.K., Friedman, T.C., Doppman, J.L., Cutler, G.B., Chrousos, G.P., Wilder, R.L., Gold, P.W., Yanovski, J.A. J. Clin. Invest. (1996) [Pubmed]
  32. Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone. Sanchez, V.C., Goldstein, J., Stuart, R.C., Hovanesian, V., Huo, L., Munzberg, H., Friedman, T.C., Bjorbaek, C., Nillni, E.A. J. Clin. Invest. (2004) [Pubmed]
  33. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Potter, E., Sutton, S., Donaldson, C., Chen, R., Perrin, M., Lewis, K., Sawchenko, P.E., Vale, W. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  34. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area. Viau, V., Meaney, M.J. J. Neurosci. (1996) [Pubmed]
  35. Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects. Goldstone, A.P., Unmehopa, U.A., Bloom, S.R., Swaab, D.F. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  36. Leukotrienes in the rat central nervous system. Lindgren, J.A., Hökfelt, T., Dahlén, S.E., Patrono, C., Samuelsson, B. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  37. Immediate release of prolactin and biphasic effects on growth hormone release following electrical stimulation of the median eminence. Malven, P.V. Endocrinology (1975) [Pubmed]
 
WikiGenes - Universities