The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tritane     benzhydrylbenzene

Synonyms: NSC-4049, ACMC-1AYBA, CCRIS 5194, AG-B-54468, AG-F-76644, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of benzhydrylbenzene

 

High impact information on benzhydrylbenzene

 

Chemical compound and disease context of benzhydrylbenzene

 

Biological context of benzhydrylbenzene

 

Anatomical context of benzhydrylbenzene

 

Associations of benzhydrylbenzene with other chemical compounds

 

Gene context of benzhydrylbenzene

 

Analytical, diagnostic and therapeutic context of benzhydrylbenzene

  • Maximal enzyme activity occurred at pH 9.0 and 60 degrees C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography [2].
  • The TPM dye was degraded to simple metabolic intermediates in the bioreactor with 94% decolorization at a flow rate of 4 ml h(-1) [25].

References

  1. Inhibition and enhancement of phleomycin-induced DNA breakdown by aromatic tricyclic compounds. Grigg, G.W., Gero, A.M., Sasse, W.H., Sleigh, M.J. Nucleic Acids Res. (1984) [Pubmed]
  2. Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and overexpression of a functional protein in Escherichia coli. Jang, M.S., Lee, Y.M., Kim, C.H., Lee, J.H., Kang, D.W., Kim, S.J., Lee, Y.C. Appl. Environ. Microbiol. (2005) [Pubmed]
  3. Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Salmonella/microsome system. Brown, J.P., Roehm, G.W., Brown, R.J. Mutat. Res. (1978) [Pubmed]
  4. Biodegradation of triphenylmethane dyes. Azmi, W., Sani, R.K., Banerjee, U.C. Enzyme Microb. Technol. (1998) [Pubmed]
  5. Inhibition of influenza virus by triphenylmethane compounds. Steward, D.L., Martin, J., Grollman, A.P. Ann. N. Y. Acad. Sci. (1977) [Pubmed]
  6. Highly cross-linked self-assembled monolayer stationary phases: an approach to greatly enhancing the low pH stability of silica-based stationary phases. Trammell, B.C., Ma, L., Luo, H., Jin, D., Hillmyer, M.A., Carr, P.W. Anal. Chem. (2002) [Pubmed]
  7. Reactivity of ether- and amine-complexed dimers and tetramers of alkyllithiums towards triphenylmethane. Moene, W., Vos, M., Schakel, M., de Kanter, F.J., Schmitz, R.F., Klumpp, G.W. Chemistry (Weinheim an der Bergstrasse, Germany) (2000) [Pubmed]
  8. Influence of cationic triphenylmethane dyes upon DNA polymerization and product hydrolysis by Escherichia coli polymerase I. Wolfe, A.D. Biochemistry (1977) [Pubmed]
  9. Triphenylmethane dyes as inhibitors of reverse transcriptase, ribonucleic acid polymerase, and protein synthesis. Structure-activity relationships. Liao, L.L., Horwitz, S.B., Huang, M.T., Grollman, A.P., Steward, D., Martin, J. J. Med. Chem. (1975) [Pubmed]
  10. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Ren, S., Guo, J., Zeng, G., Sun, G. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  11. Prometaphase banding of human chromosomes with basic fuchsin. Scheres, J.M., Merkx, G.F., Hustinx, T.W. Hum. Genet. (1982) [Pubmed]
  12. Interactions of heteroaromatic compounds with nucleic acids. A - T-specific non-intercalating DNA ligands. Müller, W., Gautier, F. Eur. J. Biochem. (1975) [Pubmed]
  13. Mechanism for inhibition of thyroid peroxidase by leucomalachite green. Doerge, D.R., Chang, H.C., Divi, R.L., Churchwell, M.I. Chem. Res. Toxicol. (1998) [Pubmed]
  14. Inhibition of angiogenesis by aurintricarboxylic acid. Gagliardi, A.R., Collins, D.C. Anticancer Res. (1994) [Pubmed]
  15. The action of some triphenylmethane dyes on yeast and erythrocyte membranes. Elferink, J.G., Booij, H.L. Arzneimittel-Forschung. (1975) [Pubmed]
  16. Inhibition of intercellular junctional communication in human fibroblasts by triphenylmethane, triphenylmethylchloride, tetraphenylboron and related compounds. Davidson, J.S., Baumgarten, I.M., Harley, E.H. Biochim. Biophys. Acta (1985) [Pubmed]
  17. In vivo estrogenic and antiestrogenic activity of phenolphthalein and derivative compounds. Nieto, A., García, C., López de Haro, M.S. Biochem. Int. (1990) [Pubmed]
  18. Biotransformation of malachite green by the fungus Cunninghamella elegans. Cha, C.J., Doerge, D.R., Cerniglia, C.E. Appl. Environ. Microbiol. (2001) [Pubmed]
  19. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Jadhav, J.P., Govindwar, S.P. Yeast (2006) [Pubmed]
  20. Variability of tumor response to chemotherapy. II. Contribution of tumor heterogeneity. Simpson-Herren, L., Noker, P.E., Wagoner, S.D. Cancer Chemother. Pharmacol. (1988) [Pubmed]
  21. Genotoxicity of malachite green and leucomalachite green in female Big Blue B6C3F1 mice. Mittelstaedt, R.A., Mei, N., Webb, P.J., Shaddock, J.G., Dobrovolsky, V.N., McGarrity, L.J., Morris, S.M., Chen, T., Beland, F.A., Greenlees, K.J., Heflich, R.H. Mutat. Res. (2004) [Pubmed]
  22. Inhibition of human glutathione S-transferases by basic triphenylmethane dyes. Glanville, S.D., Clark, A.G. Life Sci. (1997) [Pubmed]
  23. Degradation of xenobiotics by white rot fungi. Higson, F.K. Reviews of environmental contamination and toxicology. (1991) [Pubmed]
  24. dUTPase as a platform for antimalarial drug design: structural basis for the selectivity of a class of nucleoside inhibitors. Whittingham, J.L., Leal, I., Nguyen, C., Kasinathan, G., Bell, E., Jones, A.F., Berry, C., Benito, A., Turkenburg, J.P., Dodson, E.J., Ruiz Perez, L.M., Wilkinson, A.J., Johansson, N.G., Brun, R., Gilbert, I.H., Gonzalez Pacanowska, D., Wilson, K.S. Structure (Camb.) (2005) [Pubmed]
  25. Biodegradation of acid blue-15, a textile dye, by an up-flow immobilized cell bioreactor. Sharma, D.K., Saini, H.S., Singh, M., Chimni, S.S., Chadha, B.S. J. Ind. Microbiol. Biotechnol. (2004) [Pubmed]
 
WikiGenes - Universities