The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Divema     ethenoxyethene; furan-2,5-dione

Synonyms: MVE-1, MVE-2, MVE-4, CCRIS 4292, NSC-59196, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PYRAN COPOLYMER

 

Psychiatry related information on PYRAN COPOLYMER

  • However, neither i.v. treatment with MVE-2 nor CSF-1 (20,000 U daily for 4 days) had any pronounced effect on the permissiveness of KC or PMO to infection with HSV-1 [6].
 

High impact information on PYRAN COPOLYMER

 

Chemical compound and disease context of PYRAN COPOLYMER

 

Biological context of PYRAN COPOLYMER

  • Although numbers were small, the enhanced ADCC seemed related to both single dose and cumulative dose of MVE-2 [4].
  • The stimulatory effects on myelopoiesis, however, could only be obtained by administering MVE-2 at greater than or equal to 3 days after CY, which correlated with an MVE-2-induced simultaneous increase in granulocyte and/or macrophage colony-stimulating factor secretion by bone marrow cells or M phi [15].
  • IC-21 macrophages and primary cultures of pyran copolymer-elicited peritoneal macrophages demonstrated similar tumor binding avidity, kinetics, saturability, and metabolic requirements for optimal high avidity tumor binding [16].
  • We therefore compared the pharmacokinetics and in vivo efficacy of SOD with two modified forms of this protein: SOD coupled to the copolymer DIVEMA and mannosylated-SOD [17].
  • This conclusion was based on the reduced viabilities of cells treated with both an eliciting agent and an activating agent prior to in vitro treatment with anti-asGM1 + C, as well as by reductions in cytolytic activity of pM phi elicited with peptone and activated by MVE-2, following anti-asGM1 treatment in vitro or administration in vivo [18].
 

Anatomical context of PYRAN COPOLYMER

 

Associations of PYRAN COPOLYMER with other chemical compounds

 

Gene context of PYRAN COPOLYMER

  • The degree of inhibition of mammalian DNA-dependent RNA polymerases I and II and Moloney leukemia virus RNA-dependent DNA polymerase by pyran copolymer was dependent on the concentration of the divalent cation cofactor in the reaction mixture [26].
  • Second, we established that MVE-2 may exert CSF-mediated antitumor effects on certain leukemic tumor cells [27].
  • These results suggest that DIVEMA is a useful polymeric modifier for conjugation of TNF-alpha to increase its antitumor activity [21].
  • Immune response of BALB/c X DBA/2F1 mice to a tumor allograft during pyran copolymer-induced tumor enhancement [28].
  • In vivo treatment with C. parvum (0.7 mg/mouse, i.p., day-3), MVE-2 (25 mg/kg, i.p., day-3), poly I:C (4 mg/kg, i.p., day-3), or IFN (10(5) U/mouse, i.p., day-1) resulted in a marked augmentation and a change of distribution of cytotoxic activity [29].
 

Analytical, diagnostic and therapeutic context of PYRAN COPOLYMER

  • Enhancement of a tumor allograft in BALB/c x DBA/2 F1 mice by pyran copolymer [30].
  • Injection of MBL-2 tumor-bearing mice with MVE-2, at 3 days after Cy treatment, caused a decrease in tumor burden and a significant increase in median survival time as compared to treatment with CY alone [15].
  • These results suggest several approaches to the clinical application of MVE-2 and provide additional data on the therapeutic activity of the pyran copolymer derivatives in different animal models [31].
  • MVE-2 was, therefore, chosen for clinical trials [4].
  • Further experiments demonstrated that splenectomy before the administration of MVE-2 did not inhibit the augmentation of liver-associated NK activity [32].

References

  1. Augmentation of organ-associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver. Wiltrout, R.H., Mathieson, B.J., Talmadge, J.E., Reynolds, C.W., Zhang, S.R., Herberman, R.B., Ortaldo, J.R. J. Exp. Med. (1984) [Pubmed]
  2. Histopathology of the host response to Lewis lung carcinoma: modulation by pyran. Snodgrass, M.J., Morahan, P.S., Kaplan, A.M. J. Natl. Cancer Inst. (1975) [Pubmed]
  3. Tumor suppression by pyran copolymer: correlation with production of cytotoxic macrophages. Harmel, R.P., zbar, B. J. Natl. Cancer Inst. (1975) [Pubmed]
  4. Evaluation of the immunological and toxicological properties of MVE-2 in phase I trials. Rinehart, J.J., Young, D.C., Neidhart, J.A. Cancer Res. (1983) [Pubmed]
  5. Chemical and biological adjuvants capable of potentiating tumor cell vaccine. Chirigos, M.A., Stylos, W.A., Schultz, R.M., Fullen, J.R. Cancer Res. (1978) [Pubmed]
  6. Intrinsic resistance to herpes simplex virus type 1 infection in liver Kupffer cells and peritoneal macrophages from normal and immunomodulator-treated mice. Hendrzak, J.A., Pinto, A.J., Morahan, P.S. Nat. Immun. (1992) [Pubmed]
  7. Factor B, the complement alternative pathway serine proteinase, is a major constitutive protein synthesized and secreted by resident and elicited mouse macrophages. Sundsmo, J.S., Chin, J.R., Papin, R.A., Fair, D.S., Werb, Z. J. Exp. Med. (1985) [Pubmed]
  8. Experimental chemotherapy (L1210) with 5-aza-2'-deoxycytidine in combination with pyran copolymer (MVE-4), an immune adjuvant. Zaharko, D.S., Covey, J.M., Muneses, C.C. J. Natl. Cancer Inst. (1985) [Pubmed]
  9. Effects of combined radiotherapy and immunotherapy with the use of pyran copolymer on murine fibrosarcoma. Collins, A.L., Song, C.W. J. Natl. Cancer Inst. (1978) [Pubmed]
  10. Chemoattractant properties of Corynebacterium parvum and pyran copolymer for human monocytes and neutrophils. Majeski, J.A., Stinnett, J.D. J. Natl. Cancer Inst. (1977) [Pubmed]
  11. Role of endogenous interferon in the anti-tumor effect of poly I-C and statolon as demonstrated by the use of anti-mouse interferon serum. Gresser, I., Maury, C., Bandu, M.T., Tovey, M., Maunoury, M.T. Int. J. Cancer (1978) [Pubmed]
  12. Induction of acid-stable canine interferon in vivo and in vitro. Forman, M.S., Adams, E.W., Vanderpool, E.A., Turner, W. Am. J. Vet. Res. (1979) [Pubmed]
  13. Role of NK cells in immunomodulator-mediated resistance to herpesvirus infection. Kunder, S.C., Wu, L., Morahan, P.S. Antiviral Res. (1993) [Pubmed]
  14. Increased therapeutic efficacy and reduced toxicity of doxorubicin linked to pyran copolymer via the side chain of the drug. Zunino, F., Pratesi, G., Pezzoni, G. Cancer treatment reports. (1987) [Pubmed]
  15. In vivo modulation of myelopoiesis and immune functions by maleic anhydride divinyl ether copolymer (MVE-2) in tumor-free and MBL-2 tumor-bearing mice treated with cyclophosphamide. Schlick, E., Ruffmann, R., Chirigos, M.A., Welker, R.D., Herberman, R.B. Cancer Res. (1985) [Pubmed]
  16. Characterization of tumor binding by the IC-21 macrophage cell line. Crawford, E.K., Latham, P.S., Shah, E.M., Hasday, J.D. Cancer Res. (1990) [Pubmed]
  17. Targeting of superoxide dismutase to the liver results in anti-inflammatory effects in rats with fibrotic livers. Swart, P.J., Hirano, T., Kuipers, M.E., Ito, Y., Smit, C., Hashida, M., Nishikawa, M., Beljaars, L., Meijer, D.K., Poelstra, K. J. Hepatol. (1999) [Pubmed]
  18. Reactivity of anti-asialo GM1 serum with tumoricidal and non-tumoricidal mouse macrophages. Wiltrout, R.H., Santoni, A., Peterson, E.S., Knott, D.C., Overton, W.R., Herberman, R.B., Holden, H.T. J. Leukoc. Biol. (1985) [Pubmed]
  19. Suppression of activity of mouse natural killer (NK) cells by activated macrophages from mice treated with pyran copolymer. Santoni, A., Riccardi, C., Barlozzari, T., Herberman, R.B. Int. J. Cancer (1980) [Pubmed]
  20. Activation of mouse macrophages by pyran copolymer and role in augmentation of natural killer activity. Puccetti, P., Santoni, A., Riccardi, C., Holden, H.T., Herberman, R.B. Int. J. Cancer (1979) [Pubmed]
  21. Antitumor activity of tumor necrosis factor alpha conjugated with divinyl ether and maleic anhydride copolymer on solid tumors in mice. Kaneda, Y., Yamamoto, Y., Kamada, H., Tsunoda, S., Tsutsumi, Y., Hirano, T., Mayumi, T. Cancer Res. (1998) [Pubmed]
  22. Adjuvant chemoimmunotherapy of cancer: influence of tumor burden and role of functional immune effector cells in mice. Schlick, E., Hewetson, P., Ruffmann, R. Cancer Res. (1986) [Pubmed]
  23. Bioconjugation of tumor necrosis factor-alpha with the copolymer of divinyl ether and maleic anhydride increasing its antitumor potency. Kaneda, Y., Yamamoto, Y., Tsunoda, S., Kamada, H., Tsutsumi, Y., Hirano, T., Mayumi, T. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  24. Direct activation in vitro of mouse peritoneal macrophages by pyran copolymer (NSC 46015). Schultz, R.M., Papamatheakis, J.D., Chirigos, M.A. Cell. Immunol. (1977) [Pubmed]
  25. Immobilization of protein ligands with methyl vinyl ether-maleic anhydride copolymer. Isosaki, K., Seno, N., Matsumoto, I., Koyama, T., Moriguchi, S. J. Chromatogr. (1992) [Pubmed]
  26. Role of divalent ion complex formation in pyran--inhibition of nucleic acid biosynthesis. Fiel, R.J., Musser, D.A., Munson, B.R. J. Natl. Cancer Inst. (1976) [Pubmed]
  27. In vivo induction of terminal differentiation of malignant myelopoietic progenitor cells by CSF-inducing biological response modifiers. Schlick, E., Ruscetti, F.W. Blood (1986) [Pubmed]
  28. Immune response of BALB/c X DBA/2F1 mice to a tumor allograft during pyran copolymer-induced tumor enhancement. Schultz, R.M., Woods, W.A., Mohr, S.J., Chirigos, M.A. Cancer Res. (1976) [Pubmed]
  29. Changes in number and density of large granular lymphocytes upon in vivo augmentation of mouse natural killer activity. Santoni, A., Piccoli, M., Ortaldo, J.R., Mason, L., Wiltrout, R.H., Herberman, R.B. J. Immunol. (1985) [Pubmed]
  30. Enhancement of a tumor allograft in BALB/c x DBA/2 F1 mice by pyran copolymer. Mohr, S.J., Chirigos, M.A., Fuhrman, F., Smith, G. Cancer Res. (1976) [Pubmed]
  31. Therapy of artificial and spontaneous metastases of murine tumors with maleic anhydride-divinyl ether-2. Milas, L., Hersh, E.M., Hunter, N. Cancer Res. (1981) [Pubmed]
  32. Augmentation of mouse liver-associated natural killer activity by biologic response modifiers occurs largely via rapid recruitment of large granular lymphocytes from the bone marrow. Wiltrout, R.H., Pilaro, A.M., Gruys, M.E., Talmadge, J.E., Longo, D.L., Ortaldo, J.R., Reynolds, C.W. J. Immunol. (1989) [Pubmed]
 
WikiGenes - Universities