The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

riluzole     6-(trifluoromethoxy) benzothiazol-2-amine

Synonyms: Rilutek, Riluzol, Riluzolum, Lopac-R-116, CHEMBL744, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rilutek

 

Psychiatry related information on Rilutek

 

High impact information on Rilutek

 

Chemical compound and disease context of Rilutek

 

Biological context of Rilutek

  • Inactivation of dEAAT1 by RNA interference led to characteristic behavior deficits that were significantly rescued by expression of the human glutamate transporter hEAAT2 or the administration in food of riluzole, an anti-excitotoxic agent used in the clinic for human ALS patients [18].
  • CONCLUSION: The pharmacokinetics of riluzole has been characterized in patients during long-term therapy [19].
  • Decrement of the thenar compound muscle action potentials (CMAP), after repetitive nerve stimulation (RNS) of the median nerve at 3 Hz, was evaluated in patients with ALS before riluzole therapy [20].
  • Mutants of TREK-1 lacking the Ser residue where the kinase A phosphorylation takes place are activated in a sustained manner by riluzole [21].
  • These results show that the riluzole binding site is on the alpha subunit of the sodium channel, and they suggest that stabilization of the inactivated state may underlie the neuroprotective properties of riluzole [22].
 

Anatomical context of Rilutek

  • (i) When the oocytes were held at strongly hyperpolarized potentials to close the sodium channels and riluzole was added to the external solution, the current elicited by test depolarizing pulses was reduced within a few minutes and recovered upon washout of the riluzole [22].
  • In the Cox multivariate model, age, progression rate of respiratory, bulbar, and lower limb symptoms, EEDC classification, percutaneous endoscopic gastrostomy, and treatment with riluzole were significantly related to outcome [23].
  • Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment [24].
  • DESIGN: Subjects with homozygous deletions of the survival motor neuron gene were recruited from pediatric neuromuscular clinics and randomized in a 2:1 ratio, 2 riluzole to 1 placebo [25].
  • However, in the same cell systems, riluzole induced neuronal and glial cell death with concentrations higher than those needed for maximal protective effects (> or =100 microM:) [26].
 

Associations of Rilutek with other chemical compounds

  • As with TREK1, TREK2 is activated by the volatile general anesthetics chloroform, halothane, and isoflurane and by the neuroprotective agent riluzole [27].
  • Protection against excitotoxicity could be achieved with a combination of pharmacologic agents having neuroprotective activity, such as antiglutamate agents (e.g., riluzole), N-methyl-D-aspartate (NMDA) and non-NMDA antagonists, free-radical scavengers, calcium-channel blockers, and neurotrophic factors [28].
  • Pharmacological blocking agents applied during whole-cell recordings in current-clamp mode demonstrated that the medium AHP conductance (apamin), BK-type Ca2+ -dependent K+ channels (iberiotoxin), voltage-activated Ca2+ channels (CdCl2), M-current (linopirdine) and persistent Na+ currents (riluzole) are all unnecessary for SFA [29].
  • The metabotropic glutamate receptor subtype 5 antagonist MPEP and the Na+ channel blocker riluzole show different neuroprotective profiles in reversing behavioral deficits induced by excitotoxic prefrontal cortex lesions [30].
  • In the second protocol, consisting of 3 injections of MPTP (15 mg/kg i.p.), riluzole, administered 4 times at the dose of 5 mg/kg p.o., had no effect on MPP(+) levels [17].
  • Phosphorylation of GluR1 at the PKA (cAMP-dependent protein kinase) site (S845) was enhanced in both lamotrigine- and riluzole-treated hippocampal neurons, but reduced in valproate-treated neurons [31].
 

Gene context of Rilutek

 

Analytical, diagnostic and therapeutic context of Rilutek

  • FINDINGS: At the end of the study, after median follow-up of 18 months, 122 (50.4%) placebo-treated patients and 134 (56.8%) of those who received 100 mg/day riluzole were alive without tracheostomy (unadjusted risk 0.79, p = 0.076; adjusted risk 0.65, p = 0.002) [36].
  • Using transcranial magnetic stimulation, the effect of riluzole (RLZ) on cortical excitability was studied in patients with amyotrophic lateral sclerosis (ALS) [37].
  • One early attempt to define disease stages consisted of post-hoc analysis of the international, placebo-controlled, clinical trials of riluzole [38].
  • Riluzole plasma levels were determined by HPLC, and the data were analyzed by nonlinear mixed-effect modeling (NONMEM program) with use of a one-compartment structural model [19].
  • METHODS: Thirteen patients aged between 18 and 65 years with a primary diagnosis of OCD that had proven resistant to standard treatment were treated with the addition of riluzole to their existing pharmacotherapy [8].

References

  1. Riluzole in amyotrophic lateral sclerosis. Burgerman, R.S. N. Engl. J. Med. (1994) [Pubmed]
  2. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. Bensimon, G., Lacomblez, L., Meininger, V. N. Engl. J. Med. (1994) [Pubmed]
  3. Methemoglobinemia due to riluzole. Viallon, A., Page, Y., Bertrand, J.C. N. Engl. J. Med. (2000) [Pubmed]
  4. Icteric toxic hepatitis associated with riluzole. Castells, L.I., Gámez, J., Cervera, C., Guardia, J. Lancet (1998) [Pubmed]
  5. Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. Malgouris, C., Bardot, F., Daniel, M., Pellis, F., Rataud, J., Uzan, A., Blanchard, J.C., Laduron, P.M. J. Neurosci. (1989) [Pubmed]
  6. Open-label trial of riluzole in generalized anxiety disorder. Mathew, S.J., Amiel, J.M., Coplan, J.D., Fitterling, H.A., Sackeim, H.A., Gorman, J.M. The American journal of psychiatry. (2005) [Pubmed]
  7. Intoxication with riluzole in Huntington's disease. Bodner, T., Jenner, C., Benke, T., Ober, A., Seppi, K., Fleischhacker, W.W. Neurology (2001) [Pubmed]
  8. Riluzole augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. Coric, V., Taskiran, S., Pittenger, C., Wasylink, S., Mathalon, D.H., Valentine, G., Saksa, J., Wu, Y.T., Gueorguieva, R., Sanacora, G., Malison, R.T., Krystal, J.H. Biol. Psychiatry (2005) [Pubmed]
  9. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Zarate, C.A., Quiroz, J.A., Singh, J.B., Denicoff, K.D., De Jesus, G., Luckenbaugh, D.A., Charney, D.S., Manji, H.K. Biol. Psychiatry (2005) [Pubmed]
  10. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. Shakkottai, V.G., Chou, C.H., Oddo, S., Sailer, C.A., Knaus, H.G., Gutman, G.A., Barish, M.E., LaFerla, F.M., Chandy, K.G. J. Clin. Invest. (2004) [Pubmed]
  11. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. Fink, M., Lesage, F., Duprat, F., Heurteaux, C., Reyes, R., Fosset, M., Lazdunski, M. EMBO J. (1998) [Pubmed]
  12. Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay. Heiser, V., Engemann, S., Bröcker, W., Dunkel, I., Boeddrich, A., Waelter, S., Nordhoff, E., Lurz, R., Schugardt, N., Rautenberg, S., Herhaus, C., Barnickel, G., Böttcher, H., Lehrach, H., Wanker, E.E. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  13. Specific regulation of rat glial cell line-derived neurotrophic factor gene expression by riluzole in C6 glioma cells. Caumont, A.S., Octave, J.N., Hermans, E. J. Neurochem. (2006) [Pubmed]
  14. Evaluation of the benzothiazole aggregation inhibitors riluzole and PGL-135 as therapeutics for Huntington's disease. Hockly, E., Tse, J., Barker, A.L., Moolman, D.L., Beunard, J.L., Revington, A.P., Holt, K., Sunshine, S., Moffitt, H., Sathasivam, K., Woodman, B., Wanker, E.E., Lowden, P.A., Bates, G.P. Neurobiol. Dis. (2006) [Pubmed]
  15. Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. Zhang, C., Raghupathi, R., Saatman, K.E., Smith, D.H., Stutzmann, J.M., Wahl, F., McIntosh, T.K. J. Neurosci. Res. (1998) [Pubmed]
  16. Neuroreceptors and ion channels as the basis for drug action: past, present, and future. Narahashi, T. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  17. The protective effect of riluzole in the MPTP model of Parkinson's disease in mice is not due to a decrease in MPP(+) accumulation. Boireau, A., Dubedat, P., Bordier, F., Imperato, A., Moussaoui, S. Neuropharmacology (2000) [Pubmed]
  18. Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Rival, T., Soustelle, L., Strambi, C., Besson, M.T., Iché, M., Birman, S. Curr. Biol. (2004) [Pubmed]
  19. Population pharmacokinetics of riluzole in patients with amyotrophic lateral sclerosis. Bruno, R., Vivier, N., Montay, G., Le Liboux, A., Powe, L.K., Delumeau, J.C., Rhodes, G.R. Clin. Pharmacol. Ther. (1997) [Pubmed]
  20. Prognostic value of decremental responses to repetitive nerve stimulation in ALS patients. Wang, F.C., De Pasqua, V., Gérard, P., Delwaide, P.J. Neurology (2001) [Pubmed]
  21. The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Duprat, F., Lesage, F., Patel, A.J., Fink, M., Romey, G., Lazdunski, M. Mol. Pharmacol. (2000) [Pubmed]
  22. Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Hebert, T., Drapeau, P., Pradier, L., Dunn, R.J. Mol. Pharmacol. (1994) [Pubmed]
  23. Early symptom progression rate is related to ALS outcome: a prospective population-based study. Chiò, A., Mora, G., Leone, M., Mazzini, L., Cocito, D., Giordana, M.T., Bottacchi, E., Mutani, R. Neurology (2002) [Pubmed]
  24. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. Springer, J.E., Azbill, R.D., Kennedy, S.E., George, J., Geddes, J.W. J. Neurochem. (1997) [Pubmed]
  25. A phase 1 trial of riluzole in spinal muscular atrophy. Russman, B.S., Iannaccone, S.T., Samaha, F.J. Arch. Neurol. (2003) [Pubmed]
  26. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. Storch, A., Burkhardt, K., Ludolph, A.C., Schwarz, J. J. Neurochem. (2000) [Pubmed]
  27. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. Lesage, F., Terrenoire, C., Romey, G., Lazdunski, M. J. Biol. Chem. (2000) [Pubmed]
  28. ALS therapy: targets for the future. Hugon, J. Neurology (1996) [Pubmed]
  29. Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones. Miles, G.B., Dai, Y., Brownstone, R.M. J. Physiol. (Lond.) (2005) [Pubmed]
  30. The metabotropic glutamate receptor subtype 5 antagonist MPEP and the Na+ channel blocker riluzole show different neuroprotective profiles in reversing behavioral deficits induced by excitotoxic prefrontal cortex lesions. Risterucci, C., Coccurello, R., Banasr, M., Stutzmann, J.M., Amalric, M., Nieoullon, A. Neuroscience (2006) [Pubmed]
  31. The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Du, J., Suzuki, K., Wei, Y., Wang, Y., Blumenthal, R., Chen, Z., Falke, C., Zarate, C.A., Manji, H.K. Neuropsychopharmacology (2007) [Pubmed]
  32. Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro. Sanderink, G.J., Bournique, B., Stevens, J., Petry, M., Martinet, M. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  33. Anesthetic concentrations of riluzole inhibit neuronal nitric oxide synthase activity, but not expression, in the rat hippocampus. Keita, H., Boczkowski, J., Samb, A., Lanone, S., Lang-Lazdunski, L., Rouellé, D., Desmonts, J.M., Mantz, J. Brain Res. (2000) [Pubmed]
  34. Riluzole (2-amino-6-trifluoromethoxy benzothiazole) attenuates MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Araki, T., Muramatsu, Y., Tanaka, K., Matsubara, M., Imai, Y. Neurosci. Lett. (2001) [Pubmed]
  35. Riluzole enhances ionizing radiation-induced cytotoxicity in human melanoma cells that ectopically express metabotropic glutamate receptor 1 in vitro and in vivo. Khan, A.J., Wall, B., Ahlawat, S., Green, C., Schiff, D., Mehnert, J.M., Goydos, J.S., Chen, S., Haffty, B.G. Clin. Cancer Res. (2011) [Pubmed]
  36. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lacomblez, L., Bensimon, G., Leigh, P.N., Guillet, P., Meininger, V. Lancet (1996) [Pubmed]
  37. Effects of riluzole on cortical excitability in patients with amyotrophic lateral sclerosis. Stefan, K., Kunesch, E., Benecke, R., Classen, J. Ann. Neurol. (2001) [Pubmed]
  38. What are the implications of early diagnosis? Maintaining optimal health as long as possible. Brooks, B.R. Neurology (1999) [Pubmed]
 
WikiGenes - Universities