The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Octadecanoate     octadecanoate

Synonyms: AC1MHWEJ, STEARIC_ACID, CHEBI:25629, LS-97707, CTK8J8420, ...
This record was replaced with 5281.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of oleic acid

  • Influenza virus did not alter membrane fluidity as measured by electron spin resonance spectroscopy with the probe 5-doxyl stearate [1].
  • From these results we conclude that the major structural transition at 30-31 degrees C observed previously with 5-, 12-, and 16-doxyl stearate in intact E. coli membranes is due to the DEPE present (Morrisett, J.D., Pownall, H.J., Plumlee, R.T., Smith, L.C., Zehner, Z.E., Esfahani, M., and Wakil, S.J. (1975) J. Biol. Chem. 250, 6969-6976) [2].
  • Stearate inhibition of breast cancer cell proliferation. A mechanism involving epidermal growth factor receptor and G-proteins [3].
  • In the absence of SCD1, stearate promotes oxidation, leading to protection from saturated fat-induced obesity [4].
  • Muscle palmityl CoA (16:0; 0.54 +/- 0.08 vs. 0.35 +/- 0.04 nmol/g wet wt) concentration decreased by approximately 35% (P < 0.05) with weight loss, whereas stearate CoA (18:0; -17%; 0.65 +/- 0.05 vs. 0.54 +/- 0.03 nmol/g wet wt) and linoleate CoA (18:2; -30%; 2.47 +/- 0.27 vs. 1.66 +/- 0.19 nmol/g wet wt) were also reduced (P < 0.05) [5].
 

Psychiatry related information on oleic acid

 

High impact information on oleic acid

  • This pattern of FA distribution was observed regardless of the type of nonalbumin acceptor used (phospholipid vesicles, human high- or low-density lipoproteins) or the type of FA used (palmitate, oleate, or stearate), and provided evidence for negative cooperativity for human serum albumin upon binding of 1 mol of FA per mole albumin [8].
  • The gallbladder contracted to 42 (3)% of its initial volume after oleate but remained at 89 (8)% of its initial volume after stearate [9].
  • The Garm FatA1, an acyl-acyl carrier protein (ACP) thioesterase isolated from Garcinia mangostana, generates an elevated stearate (18:0) phenotype in transgenic Brassica plants [10].
  • Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase [10].
  • The spin label, 12-doxyl stearate, was incorporated into these membranes [11].
 

Chemical compound and disease context of oleic acid

 

Biological context of oleic acid

  • The plants with the altered stearate phenotype were shown to express ribozyme RNA [17].
  • Treatment of HCAECs with saturated NEFAs (palmitate and stearate) increased apoptosis up to fivefold (P < 0.05; n = 4) [18].
  • In contrast, stearate had little effect on insulin-like growth factor-1-stimulated cell proliferation [3].
  • The kinetics of competitive inhibition for transport of oleate and stearate are shown under conditions where complications due to competition for binding of FAs to the albumin in the medium are minimized [19].
  • These results indicate that the desaturation of saturated fats such as stearate by SCD is an essential step mediating their induction of lipogenesis [4].
 

Anatomical context of oleic acid

 

Associations of oleic acid with other chemical compounds

 

Gene context of oleic acid

 

Analytical, diagnostic and therapeutic context of oleic acid

  • Structural analysis by NMR, mass spectrometry, and x-ray crystallography indicated that the rabbit liver inhibitor was a fatty acid ester (mostly stearate) of a pentacyclic triterpene acid [30].
  • The uptake of [(3)H]oleic acid and [(3)H]stearic acid into HepG2 cells was measured by radioactive assays and internalization of the non-metabolizable fluorescent fatty acid 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] (12-NBD) stearate into single HepG2 cells was semi-quantitatively assessed by laser scanning microscopy [31].
  • The LDI mass spectrum of the collected HPLC fraction of rat liver extract showed the molecular parent ions of retinyl myristate, pentadecanoate, palmitoleate, palmitate, heptadecanoate, linoleate, oleate, stearate, and 3,4-didehydroretinyl palmitate [32].
  • Comparison of the ESR 2T(||) values (the splitting between low and high field extremes, a measure of the degree of immobilization of protein-bound spin-label stearate) for bovine and human albumin indicates a greater immobilization of the spin-label molecules bound to human albumin [33].
  • 2. Ultracentrifugation of the ruptured plastids at 105000g gave a supernatant that formed mainly stearate from [2-14C]malonyl-CoA and to a lesser extent from [1-14C]acetate [34].

References

  1. Characterization of the effect of influenza virus on polymorphonuclear leukocyte membrane responses. Abramson, J.S., Parce, J.W., Lewis, J.C., Lyles, D.S., Mills, E.L., Nelson, R.D., Bass, D.A. Blood (1984) [Pubmed]
  2. Biophysical properties of a major membrane phospholipid, dielaidoylphosphatidylethanolamine, found in an Escherichia coli fatty acid auxotroph. Yang, R.D., Patel, K.M., Pownall, H.J., Knapp, R.D., Sklar, L.A., Crawford, R.B., Morrisett, J.D. J. Biol. Chem. (1979) [Pubmed]
  3. Stearate inhibition of breast cancer cell proliferation. A mechanism involving epidermal growth factor receptor and G-proteins. Wickramasinghe, N.S., Jo, H., McDonald, J.M., Hardy, R.W. Am. J. Pathol. (1996) [Pubmed]
  4. Stearoyl-CoA Desaturase-1 Mediates the Pro-lipogenic Effects of Dietary Saturated Fat. Sampath, H., Miyazaki, M., Dobrzyn, A., Ntambi, J.M. J. Biol. Chem. (2007) [Pubmed]
  5. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects. Houmard, J.A., Tanner, C.J., Yu, C., Cunningham, P.G., Pories, W.J., MacDonald, K.G., Shulman, G.I. Diabetes (2002) [Pubmed]
  6. Relative bioavailability of enteric coated pellets, stearate and ethylsuccinate formulations of erythromycin. Tjandramaga, T.B., Van Hecken, A., Mullie, A., Verbesselt, R., De Schepper, P.J., Verbist, L., Josefsson, K. Pharmacology (1984) [Pubmed]
  7. Dental anxiety and the absorption of orally administered erythromycin stearate. Coulter, W.A., McGimpsey, J.G., Coffey, A., Strawbridge, J., Linden, G.J. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. (1995) [Pubmed]
  8. Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. Cistola, D.P., Small, D.M. J. Clin. Invest. (1991) [Pubmed]
  9. Saturation of fat and cholecystokinin release: implications for pancreatic carcinogenesis. Beardshall, K., Frost, G., Morarji, Y., Domin, J., Bloom, S.R., Calam, J. Lancet (1989) [Pubmed]
  10. Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Facciotti, M.T., Bertain, P.B., Yuan, L. Nat. Biotechnol. (1999) [Pubmed]
  11. Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids. Miller, K.W., Firestone, L.L., Alifimoff, J.K., Streicher, P. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  12. Multiple thermotropic phase transitions in Escherichia coli membranes and membrane lipids. A comparison of results obtained by nitroxyl stearate paramagnetic resonance, pyrene excimer fluorescence, and enzyme activity measurements. Morrisett, J.D., Pownall, H.J., Plumlee, R.T., Smith, L.C., Zehner, Z.E. J. Biol. Chem. (1975) [Pubmed]
  13. Plasma and sputum erythromycin concentrations in chronic bronchitis. Marlin, G.E., Davis, P.R., Rutland, J., Berend, N. Thorax (1980) [Pubmed]
  14. Fatty-acid desaturation and microsomal lipid fatty-acid composition in experimental hyperthyroidism. Faas, F.H., Carter, W.J. Biochem. J. (1981) [Pubmed]
  15. Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia. Aveldano, M.I., Bazán, N.G. J. Neurochem. (1975) [Pubmed]
  16. Cellular fatty acid composition of Plesiomonas shigelloides. Chou, S., Aldova, E., Kasatiya, S. J. Clin. Microbiol. (1991) [Pubmed]
  17. Ribozymes targeted to stearoyl-ACP delta9 desaturase mRNA produce heritable increases of stearic acid in transgenic maize leaves. Merlo, A.O., Cowen, N., Delate, T., Edington, B., Folkerts, O., Hopkins, N., Lemeiux, C., Skokut, T., Smith, K., Woosley, A., Yang, Y., Young, S., Zwick, M. Plant Cell (1998) [Pubmed]
  18. Saturated, but Not Unsaturated, Fatty Acids Induce Apoptosis of Human Coronary Artery Endothelial Cells via Nuclear Factor-{kappa}B Activation. Staiger, K., Staiger, H., Weigert, C., Haas, C., H??ring, H.U., Kellerer, M. Diabetes (2006) [Pubmed]
  19. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. Abumrad, N.A., Park, J.H., Park, C.R. J. Biol. Chem. (1984) [Pubmed]
  20. Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Fink, K.L., Gross, R.W. Circ. Res. (1984) [Pubmed]
  21. Lipid dynamics and lipid-protein interactions in rat hepatocyte plasma membranes. Livingstone, C.J., Schachter, D. J. Biol. Chem. (1980) [Pubmed]
  22. Coordination of peroxisomal beta-oxidation and fatty acid elongation in HepG2 cells. Wong, D.A., Bassilian, S., Lim, S., Paul Lee, W.N. J. Biol. Chem. (2004) [Pubmed]
  23. Distribution of a fatty acid spin probe in sarcoplasmic reticulum. Evidence of membrane asymmetry. Coan, C. J. Biol. Chem. (1985) [Pubmed]
  24. In vivo incorporation of [3H]palmitic acid into PO protein, the major intrinsic protein of rat sciatic nerve myelin. Agrawal, H.C., Schmidt, R.E., Agrawal, D. J. Biol. Chem. (1983) [Pubmed]
  25. Spin-labeled stearates as probes for microenvironment of murine thymocyte adenylate cyclase-cyclic adenosine 3':5'-monophosphate system. Zenser, T.V., Petrella, V.J., Hughes, F. J. Biol. Chem. (1976) [Pubmed]
  26. Characterization of a novel lipid A containing D-galacturonic acid that replaces phosphate residues. The structure of the lipid a of the lipopolysaccharide from the hyperthermophilic bacterium Aquifex pyrophilus. Plötz, B.M., Lindner, B., Stetter, K.O., Holst, O. J. Biol. Chem. (2000) [Pubmed]
  27. The capacity of various non-esterified fatty acids to suppress lipid transfer inhibitor protein activity is related to their perturbation of the lipoprotein surface. Morton, R.E., Greene, D.J. Biochim. Biophys. Acta (2000) [Pubmed]
  28. Rhodopsin, 11-cis vitamin A, and interstitial retinol-binding protein (IRBP) during retinal development in normal and rd mutant mice. Carter-Dawson, L., Alvarez, R.A., Fong, S.L., Liou, G.I., Sperling, H.G., Bridges, C.D. Dev. Biol. (1986) [Pubmed]
  29. Regulation of Tiam1 nucleotide exchange activity by pleckstrin domain binding ligands. Crompton, A.M., Foley, L.H., Wood, A., Roscoe, W., Stokoe, D., McCormick, F., Symons, M., Bollag, G. J. Biol. Chem. (2000) [Pubmed]
  30. Rabbit and human liver contain a novel pentacyclic triterpene ester with acyl-CoA: cholesterol acyltransferase inhibitory activity. Tabas, I., Chen, L.L., Clader, J.W., McPhail, A.T., Burnett, D.A., Bartner, P., Das, P.R., Pramanik, B.N., Puar, M.S., Feinmark, S.J. J. Biol. Chem. (1990) [Pubmed]
  31. Uptake of long-chain fatty acids in HepG2 cells involves caveolae: analysis of a novel pathway. Pohl, J., Ring, A., Stremmel, W. J. Lipid Res. (2002) [Pubmed]
  32. High-performance liquid chromatography and laser desorption/ionization mass spectrometry of retinyl esters. Wingerath, T., Kirsch, D., Spengler, B., Kaufmann, R., Stahl, W. Anal. Chem. (1997) [Pubmed]
  33. The binding isotherms for the interaction of 5-doxyl stearic acid with bovine and human albumin. Rehfeld, S.J., Eatough, D.J., Plachy, W.Z. J. Lipid Res. (1978) [Pubmed]
  34. The fractionation of the fatty acid synthetase activities of avocado mesocarp plastids. Weaire, P.J., Kekwick, R.G. Biochem. J. (1975) [Pubmed]
 
WikiGenes - Universities