The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.
wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Differences between both versions are highlighted.
- Text added in the newer version is highlighted and underlined.
- Text removed in the newer version is highlighted and striked through.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text.
Read more.
Welcome to WikiGenes!
If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text.
Ideally this entry shall become one comprehensive and continuous article. Bulleted lists, for instance, were only used because it is impossible to automatically integrate independent facts into a continuous text.
Much of the current information on this page has been automatically compiled from Pubmed.
This precompiled information serves as a substrate and matrix to embed your contributions, but it is by no means the final word - Homo sapiens can do much better!
WikiGenes is a non-profit and open access community project - Read more.
Additionally, peritonitis produced by cecal ligation and puncture increased atrogin-1 and MuRF1 mRNA in gastrocnemius (but not soleus or heart) by 8 h, which was sustained for 72 and 24 h, respectively [4].
The major advance in the field has been: (i) the discovery of the atrogin-1 gene and (ii) the application of microarray expression analysis and proteomics with the objectives of obtaining comprehensive understanding of the pathways changed with disuse atrophy[5].
This perspective will focus on the signalling pathways that control skeletal muscle atrophy and hypertrophy, including the recently identified ubiquitin ligases muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), as a basis to develop targets for pharmacologic intervention in muscle disease [6].
Transfection of PGC-1alpha into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter [7].
Muscle atrophy after 4 d of high-dose dexamethasone was associated with increased mRNA of enzymes involved in proteolytic pathways (atrogin-1, muscle ring finger 1, and cathepsin L) and increased chymotrypsin-like proteasomal activity [8].
Our results showed that, despite the presence of TNF-alpha/IFN-gamma, IGF-I retained its full ability to induce the phosphorylation of Akt, Foxo3a, and GSK-3beta (respectively, 16-fold, 9-fold, and 2-fold) together with a decrease in atrogin-1 mRNA (-39%, P < 0.001) [10].
IGF-I rapidly reduced atrogin-1 expression within 1 h by blocking mRNA synthesis without affecting mRNA degradation, whereas IGF-I decreased MuRF1 mRNA slowly [11].
Subjects underwent a percutaneous muscle biopsy of the vastus lateralis to determine: (1) ubiquitin ligase gene expression (MAFbx and MuRF1); (2) frequency of apoptosis; and (3) individual fiber type and cross-sectional area [12].
The findings indicate an important role for the immediate upstream promotor of the human MAFbx gene in mediating its developmental expression and tissue specificity [14].
This study evaluated the effect of ES based on chronaxie and rheobase on the expression of the myoD and atrogin-1 genes in denervated tibialis anterior (TA) muscle of Wistar rats[15].
A biopsy was obtained from the sternohyoid muscle in patients undergoing surgery for primary HPT (n=8) and in normocalcemic control patients undergoing thyroid surgery (n=11). mRNA levels for atrogin-1, MuRF1 and the calcium-regulated proteases, mu- and m-calpain, were determined by real-time PCR[16].
To gain insights into mechanisms by which the human MAFbx gene is controlled, the structure of its upstream promotor were studied, and its expression in cultured cells was characterized [14].
We investigated the differential expression of atrogin-1 and FBXO25 in fasted and dexamethasone-treated mice and also in rats with streptozotocin-induced diabetes [2].
Changes in overall proteolysis with Dex and IGF-I correlated tightly with changes in atrogin-1 mRNA content, but not with changes in MuRF1 mRNA [11].
Insulin and insulin-like growth factor-1 act through the phosphoinositide 3-kinase/AKT pathway to suppress the expression of two of these enzymes, MuRF1 and MAFbx/atrogin-1[17].
Finally, administration of the glucocorticoid receptor antagonist RU-486 did not prevent burn-induced atrophy of the gastrocnemius or the associated elevation in atrogin-1, MuRF-1, or polyUb [18].
IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA [10].
In addition, we measured transcript levels of genes known to regulate skeletal muscle atrophy, all of which are negatively regulated by IGF-1 (Mafbx/Atrogin-1, MuRF-1) [23].
Atrophy in striated muscle results from enhanced protein breakdown and is associated with a common transcriptional profile and activation of the ubiquitin-proteasome pathway, including induction of the muscle-specific ubiquitin protein ligases atrogin-1 and muscle ring-finger protein 1 (MuRF-1) [13].
Analytical, diagnostic and therapeutic context of FBXO32
Using a RT-PCR, we demonstrated that FBXO25 is highly expressed in brain, kidney, and intestine, whereas atrogin-1 expression is largely restricted to striate muscle [2].
After 48 h of burn injury (40% total body surface area full-thickness scald burn) gastrocnemius weight was reduced, and this change was associated with an increased mRNA abundance for atrogin-1 and MuRF-1 (3.1- to 8-fold, respectively) [18].
Furthermore, in transgenic mice overexpressing PGC-1alpha, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice [7].
In cell culture experiments the potency of TNF-alpha to stimulate Murf-1/MAFbx expression, the intracellular signaling pathway, and the involvement of the E3-ligases for the impairment of contractility were assessed [9].
A real-time reverse transcription-polymerase chain reaction system showed that bedrest significantly upregulated expression of two ubiquitin ligase genes, Cbl-b and atrogin-1[24].