The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SLC2A2  -  solute carrier family 2 (facilitated...

Homo sapiens

Synonyms: GLUT-2, GLUT2, Glucose transporter type 2, liver, Solute carrier family 2, facilitated glucose transporter member 2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SLC2A2

  • Of the 15 squamous cell lung carcinomas, 6 showed amplification for at least 1 of the genes, with BCHE and SLC2A2 as the genes most frequently amplified [1].
  • Amplification of the genes BCHE and SLC2A2 in 40% of squamous cell carcinoma of the lung [1].
  • Mutations of SLC2A2 were detected in historical FBS patients in whom some of the characteristic clinical features (hepatorenal glycogen accumulation, glucose and galactose intolerance, fasting hypoglycemia, a characteristic tubular nephropathy) and the effect of therapy were described for the first time [2].
  • The characterization of the human GLUT2 gene will facilitate studies of its role in the development of diabetes mellitus [3].
  • A mutation in GLUT2, not in phosphorylase kinase subunits, in hepato-renal glycogenosis with Fanconi syndrome and low phosphorylase kinase activity [4].

Psychiatry related information on SLC2A2


High impact information on SLC2A2

  • We summarize evidence supporting the idea that glucose metabolism is required for GSIS and that the GLUT-2 facilitated glucose transporter and the glucose phosphorylating enzyme glucokinase play important roles in measuring changes in extracellular glucose concentration [6].
  • A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively [7].
  • Here we report mutations in the gene encoding the facilitative glucose transporter 2 (GLUT2) in three FBS families, including the original patient described in 1949 by Fanconi and Bickel [8].
  • Glucose uptake into pancreatic beta cells by means of the glucose transporter GLUT-2, which has a high Michaelis constant, is essential for the normal insulin secretory response to hyperglycemia [9].
  • Whenever fewer than 60% of beta cells were GLUT-2-positive, the response to glucose was absent and hyperglycemia exceeded 11 mM plasma glucose [10].

Chemical compound and disease context of SLC2A2


Biological context of SLC2A2

  • Together, our reverse chromosome painting data and our PCR analysis indicate gene amplification at 3q26 in 40% of all squamous cell lung carcinomas with BCHE and SLC2A2 as possible target genes of the amplification unit in squamous cell lung carcinoma [1].
  • We conclude that the SNPs of SLC2A2 predict the conversion to diabetes in obese subjects with IGT [12].
  • All four SNPs of SLC2A2 predicted the conversion to diabetes, and rs5393 (AA genotype) increased the risk of type 2 diabetes in the entire study population by threefold (odds ratio 3.04, 95% CI 1.34-6.88, P = 0.008) [12].
  • No mutational hot spots within SLC2A2 or even within homologous sequences among the genes for facilitative glucose transporters were detected [2].
  • Human beta-cells differ from rodent beta-cells in glucose transporter gene expression (predominantly GLUT1 instead of GLUT2), explaining their low Km (3 mmol/liter) and low VMAX (3 mmol/min per liter) for 3-O-methyl glucose transport [13].

Anatomical context of SLC2A2


Associations of SLC2A2 with chemical compounds

  • Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study [12].
  • The 100-fold lower GLUT2 abundance in human versus rat beta-cells is associated with a 10-fold slower uptake of alloxan, explaining their resistance to this rodent diabetogenic agent [13].
  • The extensive expression of GLUT2 and 5 (glucose/fructose and fructose transporters, respectively) in malignant human tissues indicates that fructose may be a good energy substrate in tumor cells [16].
  • Transport of low concentrations of fructose was not affected by 2-deoxy-D-glucose, a glucose analog that is transported by GLUT1 and GLUT2 [18].
  • Thus, this mutation in GLUT2 is unlikely the cause of a low AIR in Pima Indians [19].
  • Permanent apical GLUT2, resulting in increased sugar absorption, is a characteristic of experimental diabetes and of insulin-resistant states induced by fructose and fat [20].

Physical interactions of SLC2A2

  • Moreover, D-glucose and maltose competitively inhibit fructose transport by GLUT2 and galactose transport by GLUT3, indicating that the transport of the alternative substrates for these transporters is likely to be mediated by the same outward-facing sugar-binding site used by glucose [21].

Regulatory relationships of SLC2A2

  • We, therefore, investigated the potential role of PDX-1 in the transcriptional control of GLUT2 [22].
  • [Val12] HRAS downregulates GLUT2 in beta cells of transgenic mice without affecting glucose homeostasis [23].
  • To determine if the functional unit of the glucose transporter was a monomer or higher-order multimer, the high-affinity transporter GLUT3 was coexpressed with either the low-affinity GLUT2 or a GLUT3 mutant which contained a transport inactivating Trp410-->Leu substitution [24].
  • Increased IgG binding could be removed by absorption with GLUT-2-expressing cells but not with GLUT-1-expressing cells [25].
  • AdHNF6 infection alone caused a 2-fold increase in hepatic Glut-2 levels, suggesting that HNF 6 stimulates in vivo transcription of the Glut-2 gene [26].

Other interactions of SLC2A2

  • The genes SI, BCHE, and SLC2A2 were amplified in both tumors; and (c) we analyzed 15 additional paraffin-embedded tissues to determine the amplification frequency of these genes [1].
  • These data demonstrate that the murine GLUT2 promoter is controlled by the PDX-1 homeobox factor through the identified GLUT2TAAT motif [22].
  • Increased glycaemia after meals may be recognized by specific hypothalamic neurones due to the high Km of GLUT-2 and glucokinase [17].
  • This residue exists in the fifth membrane spanning domain, and Val at this position is conserved in mouse and rat GLUT 2, and human GLUT 1 to GLUT 4 [27].
  • Variability of the pancreatic islet beta cell/liver (GLUT 2) glucose transporter gene in NIDDM patients [27].

Analytical, diagnostic and therapeutic context of SLC2A2


  1. Amplification of the genes BCHE and SLC2A2 in 40% of squamous cell carcinoma of the lung. Brass, N., Rácz, A., Heckel, D., Remberger, K., Sybrecht, G.W., Meese, E.U. Cancer Res. (1997) [Pubmed]
  2. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Santer, R., Groth, S., Kinner, M., Dombrowski, A., Berry, G.T., Brodehl, J., Leonard, J.V., Moses, S., Norgren, S., Skovby, F., Schneppenheim, R., Steinmann, B., Schaub, J. Hum. Genet. (2002) [Pubmed]
  3. Organization of the human GLUT2 (pancreatic beta-cell and hepatocyte) glucose transporter gene. Takeda, J., Kayano, T., Fukomoto, H., Bell, G.I. Diabetes (1993) [Pubmed]
  4. A mutation in GLUT2, not in phosphorylase kinase subunits, in hepato-renal glycogenosis with Fanconi syndrome and low phosphorylase kinase activity. Burwinkel, B., Sanjad, S.A., Al-Sabban, E., Al-Abbad, A., Kilimann, M.W. Hum. Genet. (1999) [Pubmed]
  5. Psychological stress impairs Na+-dependent glucose absorption and increases GLUT2 expression in the rat jejunal brush-border membrane. Boudry, G., Cheeseman, C.I., Perdue, M.H. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2007) [Pubmed]
  6. Metabolic coupling factors in pancreatic beta-cell signal transduction. Newgard, C.B., McGarry, J.D. Annu. Rev. Biochem. (1995) [Pubmed]
  7. The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Waeber, G., Delplanque, J., Bonny, C., Mooser, V., Steinmann, M., Widmann, C., Maillard, A., Miklossy, J., Dina, C., Hani, E.H., Vionnet, N., Nicod, P., Boutin, P., Froguel, P. Nat. Genet. (2000) [Pubmed]
  8. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Santer, R., Schneppenheim, R., Dombrowski, A., Götze, H., Steinmann, B., Schaub, J. Nat. Genet. (1997) [Pubmed]
  9. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells. Unger, R.H. Science (1991) [Pubmed]
  10. Underexpression of beta cell high Km glucose transporters in noninsulin-dependent diabetes. Johnson, J.H., Ogawa, A., Chen, L., Orci, L., Newgard, C.B., Alam, T., Unger, R.H. Science (1990) [Pubmed]
  11. Liver-directed gene therapy of diabetic rats using an HVJ-E vector containing EBV plasmids expressing insulin and GLUT 2 transporter. Kim, Y.D., Park, K.G., Morishita, R., Kaneda, Y., Kim, S.Y., Song, D.K., Kim, H.S., Nam, C.W., Lee, H.C., Lee, K.U., Park, J.Y., Kim, B.W., Kim, J.G., Lee, I.K. Gene Ther. (2006) [Pubmed]
  12. Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Laukkanen, O., Lindström, J., Eriksson, J., Valle, T.T., Hämäläinen, H., Ilanne-Parikka, P., Keinänen-Kiukaanniemi, S., Tuomilehto, J., Uusitupa, M., Laakso, M. Diabetes (2005) [Pubmed]
  13. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. De Vos, A., Heimberg, H., Quartier, E., Huypens, P., Bouwens, L., Pipeleers, D., Schuit, F. J. Clin. Invest. (1995) [Pubmed]
  14. Novel amplification unit at chromosome 3q25-q27 in human prostate cancer. Sattler, H.P., Lensch, R., Rohde, V., Zimmer, E., Meese, E., Bonkhoff, H., Retz, M., Zwergel, T., Bex, A., Stoeckle, M., Wullich, B. Prostate (2000) [Pubmed]
  15. Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Ban, N., Yamada, Y., Someya, Y., Miyawaki, K., Ihara, Y., Hosokawa, M., Toyokuni, S., Tsuda, K., Seino, Y. Diabetes (2002) [Pubmed]
  16. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: Ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. Godoy, A., Ulloa, V., Rodríguez, F., Reinicke, K., Yañez, A.J., García, M.d.e. .L., Medina, R.A., Carrasco, M., Barberis, S., Castro, T., Martínez, F., Koch, X., Vera, J.C., Poblete, M.T., Figueroa, C.D., Peruzzo, B., Pérez, F., Nualart, F. J. Cell. Physiol. (2006) [Pubmed]
  17. Expression of glucose transporter isoform GLUT-2 and glucokinase genes in human brain. Roncero, I., Alvarez, E., Chowen, J.A., Sanz, C., Rábano, A., Vázquez, P., Blázquez, E. J. Neurochem. (2004) [Pubmed]
  18. Human erythrocytes express GLUT5 and transport fructose. Concha, I.I., Velásquez, F.V., Martínez, J.M., Angulo, C., Droppelmann, A., Reyes, A.M., Slebe, J.C., Vera, J.C., Golde, D.W. Blood (1997) [Pubmed]
  19. Linkage analysis of acute insulin secretion with GLUT2 and glucokinase in Pima Indians and the identification of a missense mutation in GLUT2. Janssen, R.C., Bogardus, C., Takeda, J., Knowler, W.C., Thompson, D.B. Diabetes (1994) [Pubmed]
  20. Sugar absorption in the intestine: the role of GLUT2. Kellett, G.L., Brot-Laroche, E., Mace, O.J., Leturque, A. Annu. Rev. Nutr. (2008) [Pubmed]
  21. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Colville, C.A., Seatter, M.J., Jess, T.J., Gould, G.W., Thomas, H.M. Biochem. J. (1993) [Pubmed]
  22. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Waeber, G., Thompson, N., Nicod, P., Bonny, C. Mol. Endocrinol. (1996) [Pubmed]
  23. [Val12] HRAS downregulates GLUT2 in beta cells of transgenic mice without affecting glucose homeostasis. Tal, M., Wu, Y.J., Leiser, M., Surana, M., Lodish, H., Fleischer, N., Weir, G., Efrat, S. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  24. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Burant, C.F., Bell, G.I. Biochemistry (1992) [Pubmed]
  25. Autoantibodies to the GLUT-2 glucose transporter of beta cells in insulin-dependent diabetes mellitus of recent onset. Inman, L.R., McAllister, C.T., Chen, L., Hughes, S., Newgard, C.B., Kettman, J.R., Unger, R.H., Johnson, J.H. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. Maintaining HNF6 expression prevents AdHNF3beta-mediated decrease in hepatic levels of Glut-2 and glycogen. Tan, Y., Adami, G., Costa, R.H. Hepatology (2002) [Pubmed]
  27. Variability of the pancreatic islet beta cell/liver (GLUT 2) glucose transporter gene in NIDDM patients. Tanizawa, Y., Riggs, A.C., Chiu, K.C., Janssen, R.C., Bell, D.S., Go, R.P., Roseman, J.M., Acton, R.T., Permutt, M.A. Diabetologia (1994) [Pubmed]
  28. The pancreatic beta-cell glucose sensor. Efrat, S., Tal, M., Lodish, H.F. Trends Biochem. Sci. (1994) [Pubmed]
  29. Expression of the fructose transporter GLUT5 in human breast cancer. Zamora-León, S.P., Golde, D.W., Concha, I.I., Rivas, C.I., Delgado-López, F., Baselga, J., Nualart, F., Vera, J.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  30. Identification and functional characterization of a novel mutation of hepatocyte nuclear factor-1alpha gene in a Korean family with MODY3. Kim, K.A., Kang, K., Chi, Y.I., Chang, I., Lee, M.K., Kim, K.W., Shoelson, S.E., Lee, M.S. Diabetologia (2003) [Pubmed]
  31. Exendin-4 differentiation of a human pancreatic duct cell line into endocrine cells: involvement of PDX-1 and HNF3beta transcription factors. Zhou, J., Pineyro, M.A., Wang, X., Doyle, M.E., Egan, J.M. J. Cell. Physiol. (2002) [Pubmed]
  32. Luminal glucose sensing in the rat intestine has characteristics of a sodium-glucose cotransporter. Freeman, S.L., Bohan, D., Darcel, N., Raybould, H.E. Am. J. Physiol. Gastrointest. Liver Physiol. (2006) [Pubmed]
WikiGenes - Universities