The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Cyba  -  cytochrome b-245, alpha polypeptide

Rattus norvegicus

Synonyms: Cytochrome b(558) alpha chain, Cytochrome b-245 light chain, Cytochrome b558 subunit alpha, Neutrophil cytochrome b 22 kDa polypeptide, Superoxide-generating NADPH oxidase light chain subunit, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cyba


High impact information on Cyba

  • Immunohistochemical staining indicated the localization of NADPH oxidase proteins gp91phox, p22phox, p47phox, and p67phox almost exclusively in the adventitia of the rat aorta with no substantial staining in the media [5].
  • p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats [6].
  • To investigate the mechanism responsible for this increased oxidase activity, we examined p22phox mRNA expression in rats made hypertensive by implanting an osmotic minipump that delivered Ang II (0.7 mg/kg per day) [6].
  • In situ hybridization of aortic tissue showed that p22phox mRNA was expressed in medial smooth muscle as well as in the adventitia [6].
  • These findings suggest that Ang II-induced hypertension activates the NADPH/NADH oxidase system by upregulating mRNA levels of one or several components of this oxidase system, including the p22phox, and that the NADPH/NADH oxidase system is associated with the pathology of hypertension in vivo [6].

Chemical compound and disease context of Cyba


Biological context of Cyba


Anatomical context of Cyba


Associations of Cyba with chemical compounds

  • This study shows greater levels of p22-phox mRNA/protein expression, NAD(P)H oxidase activity, and superoxide anion (O(2)(-)) production in proliferating versus fully confluent and growth-arrested 50% confluent CMEC [9].
  • Both enhanced transcription of the p22-phox gene and enhanced mRNA half-life were shown to contribute to the increase in p22-phox mRNA levels as demonstrated by nuclear run-on studies and Northern analyses after actinomycin D transcriptional arrest, respectively [9].
  • The increases in p22-phox mRNA levels induced by a stretch force in combination with angiotensin II were prevented by treatment with an angiotensin type I (AT1) receptor antagonist, RNH-6270 (100 nmol/l) [12].
  • To this end, first we examined the abundance of several components of reduced nicotinamide-adenine dinucleotide phosphate oxidase (identified as the major source of reactive oxygen species), including gp91phox/Nox2, p22phox, p47phox, and Nox3 using real-time PCR [13].
  • Cells were transiently transfected with phosphorothioate-modified rat p22phox antisense oligonucleotides to investigate the potential role of NAD(P)H oxidase [14].

Physical interactions of Cyba

  • We conclude adult CF express Nox4/p22 phox-containing oxidant generating complex activated by H(2)O(2), OAG, and AA through a pathway that requires activation of PLA(2) [15].

Regulatory relationships of Cyba

  • This effect was transduced by angiotensin receptor type-1 (AT1) and was inhibited by a flavoprotein inhibitor (DIP) or p22phox antisense oligonucleotides, indicating the involvement of membrane NAD(P)H oxidase [14].
  • Antisense against p22phox also solely inhibited p38 MAPK but did not affect ERK [16].

Other interactions of Cyba


Analytical, diagnostic and therapeutic context of Cyba


  1. RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Modlinger, P., Chabrashvili, T., Gill, P.S., Mendonca, M., Harrison, D.G., Griendling, K.K., Li, M., Raggio, J., Wellstein, A., Chen, Y., Welch, W.J., Wilcox, C.S. Hypertension (2006) [Pubmed]
  2. Expression of p22-phox and gp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Fukui, T., Yoshiyama, M., Hanatani, A., Omura, T., Yoshikawa, J., Abe, Y. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  3. Arachidonic acid metabolites mediate angiotensin II-induced NADH/NADPH oxidase activity and hypertrophy in vascular smooth muscle cells. Zafari, A.M., Ushio-Fukai, M., Minieri, C.A., Akers, M., Lassègue, B., Griendling, K.K. Antioxid. Redox Signal. (1999) [Pubmed]
  4. Enhanced vascular production of superoxide in OLETF rat after the onset of hyperglycemia. Kim, I.J., Kim, Y.K., Son, S.M., Hong, K.W., Kim, C.D. Diabetes Res. Clin. Pract. (2003) [Pubmed]
  5. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Wang, H.D., Pagano, P.J., Du, Y., Cayatte, A.J., Quinn, M.T., Brecher, P., Cohen, R.A. Circ. Res. (1998) [Pubmed]
  6. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Fukui, T., Ishizaka, N., Rajagopalan, S., Laursen, J.B., Capers, Q., Taylor, W.R., Harrison, D.G., de Leon, H., Wilcox, J.N., Griendling, K.K. Circ. Res. (1997) [Pubmed]
  7. Lack of impairment of nitric oxide-mediated responses in a rat model of high-renin hypertension. Artigues-Varin, C., Richard, V., Renet, S., Henry, J.P., Thuillez, C. Clin. Exp. Pharmacol. Physiol. (2002) [Pubmed]
  8. Cytochrome b-558 alpha-subunit cloning and expression in rat aortic smooth muscle cells. Fukui, T., Lassègue, B., Kai, H., Alexander, R.W., Griendling, K.K. Biochim. Biophys. Acta (1995) [Pubmed]
  9. Coronary microvascular endothelial cell growth regulates expression of the gene encoding p22-phox. Bayraktutan, U. Free Radic. Biol. Med. (2005) [Pubmed]
  10. p22phox-derived superoxide mediates enhanced proliferative capacity of diabetic vascular smooth muscle cells. Jeong, H.Y., Jeong, H.Y., Kim, C.D. Diabetes Res. Clin. Pract. (2004) [Pubmed]
  11. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Marshall, C., Mamary, A.J., Verhoeven, A.J., Marshall, B.E. Am. J. Respir. Cell Mol. Biol. (1996) [Pubmed]
  12. Synergistic effect of mechanical stretch and angiotensin II on superoxide production via NADPH oxidase in vascular smooth muscle cells. Hitomi, H., Fukui, T., Moriwaki, K., Matsubara, K., Sun, G.P., Rahman, M., Nishiyama, A., Kiyomoto, H., Kimura, S., Ohmori, K., Abe, Y., Kohno, M. J. Hypertens. (2006) [Pubmed]
  13. Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Ye, S., Zhong, H., Campese, V.M. Hypertension (2006) [Pubmed]
  14. Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Hannken, T., Schroeder, R., Stahl, R.A., Wolf, G. Kidney Int. (1998) [Pubmed]
  15. H2O2 activates Nox4 through PLA2-dependent arachidonic acid production in adult cardiac fibroblasts. Colston, J.T., de la Rosa, S.D., Strader, J.R., Anderson, M.A., Freeman, G.L. FEBS Lett. (2005) [Pubmed]
  16. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Viedt, C., Soto, U., Krieger-Brauer, H.I., Fei, J., Elsing, C., Kübler, W., Kreuzer, J. Arterioscler. Thromb. Vasc. Biol. (2000) [Pubmed]
  17. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. Li, H., Witte, K., August, M., Brausch, I., Gödtel-Armbrust, U., Habermeier, A., Closs, E.I., Oelze, M., Münzel, T., Förstermann, U. J. Am. Coll. Cardiol. (2006) [Pubmed]
  18. Genistein inhibits expressions of NADPH oxidase p22phox and angiotensin II type 1 receptor in aortic endothelial cells from stroke-prone spontaneously hypertensive rats. Xu, J.W., Ikeda, K., Yamori, Y. Hypertens. Res. (2004) [Pubmed]
  19. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. De Keulenaer, G.W., Alexander, R.W., Ushio-Fukai, M., Ishizaka, N., Griendling, K.K. Biochem. J. (1998) [Pubmed]
  20. Thermal treatment attenuates neointimal thickening with enhanced expression of heat-shock protein 72 and suppression of oxidative stress. Okada, M., Hasebe, N., Aizawa, Y., Izawa, K., Kawabe, J., Kikuchi, K. Circulation (2004) [Pubmed]
  21. Hyperhomocysteinemia, a cardiac metabolic disease: role of nitric oxide and the p22phox subunit of NADPH oxidase. Becker, J.S., Adler, A., Schneeberger, A., Huang, H., Wang, Z., Walsh, E., Koller, A., Hintze, T.H. Circulation (2005) [Pubmed]
  22. Role of reactive oxygen species in cocaine-induced cardiac dysfunction. Moritz, F., Monteil, C., Isabelle, M., Bauer, F., Renet, S., Mulder, P., Richard, V., Thuillez, C. Cardiovasc. Res. (2003) [Pubmed]
  23. Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. Brosnan, M.J., Hamilton, C.A., Graham, D., Lygate, C.A., Jardine, E., Dominiczak, A.F. J. Hypertens. (2002) [Pubmed]
  24. Simvastatin prevents load-induced protein tyrosine nitration in overloaded hearts. Nadruz, W., Lagosta, V.J., Moreno, H., Coelho, O.R., Franchini, K.G. Hypertension (2004) [Pubmed]
WikiGenes - Universities