The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Hdac1l  -  histone deacetylase 1-like

Rattus norvegicus

Synonyms: HD1, Hdac1, Histone deacetylase 1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hdac1

 

Psychiatry related information on Hdac1

 

High impact information on Hdac1

 

Chemical compound and disease context of Hdac1

 

Biological context of Hdac1

  • Furthermore, acetylation of histones (induced by trichostatin A, a specific inhibitor of histone deacetylase) enhanced MIP-2 expression by cells stimulated with IL-1beta [13].
  • Furthermore, in CEM-C7H2 cells, at higher concentrations of butyrate (5 - 10 mM) or trichostatin A (0.4 - 0.8 microM), there was a minor but reproducible antagonistic effect of dexamethasone on apoptosis induced by each of the two histone deacetylase inhibitors, suggesting that this antagonistic effect too, is related to histone hyperacetylation [14].
  • In cells transfected with HNF-4alpha, short-chain fatty acids and trichostatin A, an inhibitor of histone deacetylase, synergistically enhanced promoter activity, suggesting that hyperacetylation of histones is an important component of the transactivation of the Glc-6-Pase gene promoter by HNF-4alpha [15].
  • Furthermore, we observed that elevating levels of histone acetylation through the use of the histone deacetylase inhibitors trichostatin A or sodium butyrate enhanced induction of long term potentiation at Schaffer-collateral synapses in area CA1 of the hippocampus, a candidate mechanism contributing to long term memory formation in vivo [16].
  • Inhibition of HDAC by trichostatin blocked the deacetylation of p53 and its transcriptional activity toward a reporter gene construct [17].
 

Anatomical context of Hdac1

 

Associations of Hdac1 with chemical compounds

 

Physical interactions of Hdac1

 

Regulatory relationships of Hdac1

 

Other interactions of Hdac1

 

Analytical, diagnostic and therapeutic context of Hdac1

References

  1. Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Rahman, M.M., Kukita, A., Kukita, T., Shobuike, T., Nakamura, T., Kohashi, O. Blood (2003) [Pubmed]
  2. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. Antos, C.L., McKinsey, T.A., Dreitz, M., Hollingsworth, L.M., Zhang, C.L., Schreiber, K., Rindt, H., Gorczynski, R.J., Olson, E.N. J. Biol. Chem. (2003) [Pubmed]
  3. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Chung, Y.L., Lee, M.Y., Wang, A.J., Yao, L.F. Mol. Ther. (2003) [Pubmed]
  4. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. Ren, M., Leng, Y., Jeong, M., Leeds, P.R., Chuang, D.M. J. Neurochem. (2004) [Pubmed]
  5. Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. Rombouts, K., Knittel, T., Machesky, L., Braet, F., Wielant, A., Hellemans, K., De Bleser, P., Gelman, I., Ramadori, G., Geerts, A. J. Hepatol. (2002) [Pubmed]
  6. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Kanai, H., Sawa, A., Chen, R.W., Leeds, P., Chuang, D.M. Pharmacogenomics J. (2004) [Pubmed]
  7. A common mechanism of action for three mood-stabilizing drugs. Williams, R.S., Cheng, L., Mudge, A.W., Harwood, A.J. Nature (2002) [Pubmed]
  8. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Steffan, J.S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B.L., Kazantsev, A., Schmidt, E., Zhu, Y.Z., Greenwald, M., Kurokawa, R., Housman, D.E., Jackson, G.R., Marsh, J.L., Thompson, L.M. Nature (2001) [Pubmed]
  9. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. Shen, S., Li, J., Casaccia-Bonnefil, P. J. Cell Biol. (2005) [Pubmed]
  10. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. Lagger, G., O'Carroll, D., Rembold, M., Khier, H., Tischler, J., Weitzer, G., Schuettengruber, B., Hauser, C., Brunmeir, R., Jenuwein, T., Seiser, C. EMBO J. (2002) [Pubmed]
  11. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Weaver, I.C., Meaney, M.J., Szyf, M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  12. Cytoprotective effect of novel histone deacetylase inhibitors against polyglutamine toxicity. Kariya, S., Hirano, M., Uesato, S., Nagai, Y., Nagaoka, Y., Furiya, Y., Asai, H., Fujikake, N., Toda, T., Ueno, S. Neurosci. Lett. (2006) [Pubmed]
  13. Macrophage inflammatory protein-2: chromosomal regulation in rat small intestinal epithelial cells. Ohno, Y., Lee, J., Fusunyan, R.D., MacDermott, R.P., Sanderson, I.R. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  14. Interaction between dexamethasone and butyrate in apoptosis induction: non-additive in thymocytes and synergistic in a T cell-derived leukemia cell line. Bernhard, D., Löffler, M., Hartmann, B.L., Yoshida, M., Kofler, R., Csordas, A. Cell Death Differ. (1999) [Pubmed]
  15. Regulation of glucose-6-phosphatase gene expression in cultured hepatocytes and H4IIE cells by short-chain fatty acids: role of hepatic nuclear factor-4alpha. Massillon, D., Arinze, I.J., Xu, C., Bone, F. J. Biol. Chem. (2003) [Pubmed]
  16. Regulation of histone acetylation during memory formation in the hippocampus. Levenson, J.M., O'Riordan, K.J., Brown, K.D., Trinh, M.A., Molfese, D.L., Sweatt, J.D. J. Biol. Chem. (2004) [Pubmed]
  17. Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post-translational modification mechanism of neurotrophin-induced tumor suppressor activation. Vaghefi, H., Neet, K.E. Oncogene (2004) [Pubmed]
  18. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., Gage, F.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  19. The neuron-restrictive silencer element-neuron-restrictive silencer factor system regulates basal and endothelin 1-inducible atrial natriuretic peptide gene expression in ventricular myocytes. Kuwahara, K., Saito, Y., Ogawa, E., Takahashi, N., Nakagawa, Y., Naruse, Y., Harada, M., Hamanaka, I., Izumi, T., Miyamoto, Y., Kishimoto, I., Kawakami, R., Nakanishi, M., Mori, N., Nakao, K. Mol. Cell. Biol. (2001) [Pubmed]
  20. Tip60 and HDAC7 interact with the endothelin receptor a and may be involved in downstream signaling. Lee, H.J., Chun, M., Kandror, K.V. J. Biol. Chem. (2001) [Pubmed]
  21. Regulation of microglial inflammatory response by histone deacetylase inhibitors. Suuronen, T., Huuskonen, J., Pihlaja, R., Kyrylenko, S., Salminen, A. J. Neurochem. (2003) [Pubmed]
  22. Impact of novel histone deacetylase inhibitors, CHAP31 and FR901228 (FK228), on adenovirus-mediated transgene expression. Taura, K., Yamamoto, Y., Nakajima, A., Hata, K., Uchinami, H., Yonezawa, K., Hatano, E., Nishino, N., Yamaoka, Y. The journal of gene medicine. (2004) [Pubmed]
  23. Fluorescence-labeled octapeptides as substrates for histone deacetylase. Hoffmann, K., Söll, R.M., Beck-Sickinger, A.G., Jung, M. Bioconjug. Chem. (2001) [Pubmed]
  24. Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. Wei, Q., Miskimins, W.K., Miskimins, R. J. Biol. Chem. (2005) [Pubmed]
  25. Repression of the c-fms gene in fibroblast cells by c-Myc-MM-1-TIF1beta complex. Satou, A., Hagio, Y., Taira, T., Iguchi-Ariga, S.M., Ariga, H. FEBS Lett. (2004) [Pubmed]
  26. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-beta production. Nakamura, T., Kukita, T., Shobuike, T., Nagata, K., Wu, Z., Ogawa, K., Hotokebuchi, T., Kohashi, O., Kukita, A. J. Immunol. (2005) [Pubmed]
  27. Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. Davis, F.J., Gupta, M., Camoretti-Mercado, B., Schwartz, R.J., Gupta, M.P. J. Biol. Chem. (2003) [Pubmed]
  28. Endogenous alpha-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. Leng, Y., Chuang, D.M. J. Neurosci. (2006) [Pubmed]
  29. Ras/MAP kinase pathways are involved in Ras specific apoptosis induced by sodium butyrate. Jung, J.W., Cho, S.D., Ahn, N.S., Yang, S.R., Park, J.S., Jo, E.H., Hwang, J.W., Jung, J.Y., Kim, S.H., Kang, K.S., Lee, Y.S. Cancer Lett. (2005) [Pubmed]
  30. Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Ryu, H., Lee, J., Olofsson, B.A., Mwidau, A., Dedeoglu, A., Escudero, M., Flemington, E., Azizkhan-Clifford, J., Ferrante, R.J., Ratan, R.R., Deodoglu, A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  31. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. Huang, Y., Doherty, J.J., Dingledine, R. J. Neurosci. (2002) [Pubmed]
  32. Deacetylase activity is required for cAMP activation of a subset of CREB target genes. Fass, D.M., Butler, J.E., Goodman, R.H. J. Biol. Chem. (2003) [Pubmed]
  33. Selective repression of c-fos gene transcription in rat embryo fibroblasts transformed by oncogenes E1A and cHa-ras. Abramova, M.V., Kukushkin, A.N., Svetlikova, S.B., Pospelova, T.V., Pospelov, V.A. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  34. Cardiac histones are substrates of histone deacetylase activity in hemorrhagic shock and resuscitation. Lin, T., Alam, H.B., Chen, H., Britten-Webb, J., Rhee, P., Kirkpatrick, J., Koustova, E. Surgery (2006) [Pubmed]
  35. Plasma pharmacokinetics and metabolism of the histone deacetylase inhibitor trichostatin a after intraperitoneal administration to mice. Sanderson, L., Taylor, G.W., Aboagye, E.O., Alao, J.P., Latigo, J.R., Coombes, R.C., Vigushin, D.M. Drug Metab. Dispos. (2004) [Pubmed]
  36. Development of a liquid chromatography/electrospray tandem mass spectrometry assay for the quantification of apicidin, a novel histone deacetylase inhibitor, in rat serum: application to a pharmacokinetic study. Shin, B.S., Kim, J., Yoon, C.H., Kim, C.H., Park, E.H., Han, J.W., Yoo, S.D. Rapid Commun. Mass Spectrom. (2005) [Pubmed]
 
WikiGenes - Universities