The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ambystoma

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ambystoma

 

High impact information on Ambystoma

 

Chemical compound and disease context of Ambystoma

 

Biological context of Ambystoma

 

Anatomical context of Ambystoma

 

Associations of Ambystoma with chemical compounds

  • Rods of Ambystoma tigrinum held in a suction electrode were jumped into a stream of 3-isobutyl-1-methylxanthine (IBMX), 0.01-1 mM [21].
  • Vitellogenin synthesis and characterisation of the liver estrogen receptor in the neotenous salamander Ambystoma mexicanum [22].
  • In a related species, Ambystoma mexicanum, in which no spontaneous external metamorphosis occurs under standard conditions, the serum T4 level was shown to remain low [23].
  • Since chick wing buds have been shown to have a higher concentration of all-trans-retinoic acid (RA) in the posterior region than in the anterior region, we set out to look for a gradient of RA in the regenerating limb of the axolotl, Ambystoma mexicanum [24].
  • The hydrolysis-resistant GTP analogue GTP-gamma-S was introduced into rods isolated from the retina of the salamander Ambystoma tigrinum to study the origin of the persistent excitation induced by intense bleaching illumination [25].
 

Gene context of Ambystoma

 

Analytical, diagnostic and therapeutic context of Ambystoma

  • We have used pH-, Na-, and Cl-sensitive microelectrodes to study basolateral HCO3- transport in isolated, perfused proximal tubules of the tiger salamander Ambystoma tigrinum [31].
  • Interestingly, by RT-PCR analysis we observed a high expression levels of TRalpha in gills, intestine, and muscles of Necturus as well as in the liver of Ambystoma mexicanum, whereas TRbeta expression was only detected in Ambystoma mexicanum but not in Necturus [32].
  • An antiserum against NIH-TSH-B7 (purified as is NIH-TSH-B8), absorbed with bovine lutropin preparation NIH-LH-B9, cross-reacts with bovine retinal glycoprotein extracts in immunodiffusion tests, and with retinal photoreceptor cells of the axolotl (Ambystoma mexicanum), as evidenced by immunofluorescence [33].
  • In an isolated vestibular organ preparation from the axolotl (Ambystoma tigrinum), glycine (10-0.01 microM) perfusion had no effect in the resting control condition, but significantly modified the response of afferent fibres to mechanical stimuli, producing a slowly increasing discharge rate during sinusoidal mechanical stimulation periods [34].
  • This immunofluorescence study aims to clarify the appearance and localization of VIP, PACAP and NOS in the gastro-intestinal tract of the Axolotl, Ambystoma mexicanum, during ontogeny [35].

References

  1. Effects of atrazine and iridovirus infection on survival and life-history traits of the long-toed salamander (Ambystoma macrodactylum). Forson, D., Storfer, A. Environ. Toxicol. Chem. (2006) [Pubmed]
  2. Acute toxicity of beryllium sulfate to salamander larvae (Ambystoma spp). Slonim, A.R., Ray, E.E. Bulletin of environmental contamination and toxicology. (1975) [Pubmed]
  3. Effects of the antiepileptic drug valproic acid on the development of the axolotl (Ambystoma mexicanum): histological investigations. Krätke, R., Kirschbaum, F. Teratog., Carcinog. Mutagen. (1996) [Pubmed]
  4. Cyclic GMP increases photocurrent and light sensitivity of retinal cones. Cobbs, W.H., Barkdoll, A.E., Pugh, E.N. Nature (1985) [Pubmed]
  5. Thyroxine-induced activation of hypothalamo-hypophysial axis in neotenic salamander larvae. Norris, D.O., Gern, W.A. Science (1976) [Pubmed]
  6. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant mexican axolotls (Ambystoma mexicanum) by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Lemanski, L.F., Mooseker, M.S., Peachey, L.D., Iyengar, M.R. J. Cell Biol. (1976) [Pubmed]
  7. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Jones, G.J., Crouch, R.K., Wiggert, B., Cornwall, M.C., Chader, G.J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  8. Immunoelectron microscopic localization of the electrogenic Na/HCO(3) cotransporter in rat and ambystoma kidney. Maunsbach, A.B., Vorum, H., Kwon, T.H., Nielsen, S., Simonsen, B., Choi, I., Schmitt, B.M., Boron, W.F., Aalkjaer, C. J. Am. Soc. Nephrol. (2000) [Pubmed]
  9. Toxicity of nitrite to larvae of the salamander Ambystoma texanum. Huey, D.W., Beitinger, T.L. Bulletin of environmental contamination and toxicology. (1980) [Pubmed]
  10. Acute toxicity of some hydrazine compounds to salamander larvae, Ambystoma spp. Slonim, A.R. Bulletin of environmental contamination and toxicology. (1986) [Pubmed]
  11. Cloning and modeling of CD8 beta in the amphibian ambystoma Mexicanum. Evolutionary conserved structures for interactions with major histocompatibility complex (MHC) class I molecules. Fellah, J.S., Tuffèry, P., Etchebest, C., Guillet, F., Bleux, C., Charlemagne, J. Gene (2002) [Pubmed]
  12. Spermatogenesis in larval Ambystoma tigrinum: positive and negative interactions in FSH and testosterone. Moore, F.L. Gen. Comp. Endocrinol. (1975) [Pubmed]
  13. Testosterone, estrogen binding protein in sexually mature larvae of Ambystoma tigrinum. Burns, J.M., Rose, F.L. Gen. Comp. Endocrinol. (1980) [Pubmed]
  14. Interrenal function in larval Ambystoma tigrinum. II. Control of aldosterone secretion and electrolyte balance by ACTH. De Ruyter, M.L., Stiffler, D.F. Gen. Comp. Endocrinol. (1986) [Pubmed]
  15. Impact of guthion on survival and growth of the frog Pseudacris regilla and the salamanders Ambystoma gracile and Ambystoma maculatum. Nebeker, A.V., Schuytema, G.S., Griffis, W.L., Cataldo, A. Arch. Environ. Contam. Toxicol. (1998) [Pubmed]
  16. Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. Barbour, B., Brew, H., Attwell, D. J. Physiol. (Lond.) (1991) [Pubmed]
  17. Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. Hare, W.A., Owen, W.G. J. Neurophysiol. (1996) [Pubmed]
  18. Evidence for enkephalin- and endorphin-immunoreactive cells in the anterior pituitary of the axolotl Ambystoma mexicanum. Leon-Olea, M., Sanchez-Alvarez, M., Piña, A.L., Bayon, A. J. Comp. Neurol. (1991) [Pubmed]
  19. Divalent cations block the cyclic nucleotide-gated channel of olfactory receptor neurons. Zufall, F., Firestein, S. J. Neurophysiol. (1993) [Pubmed]
  20. Rapid desensitization converts prolonged glutamate release into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells. Maguire, G. Eur. J. Neurosci. (1999) [Pubmed]
  21. Light and dark active phosphodiesterase regulation in salamander rods. Cobbs, W.H. J. Gen. Physiol. (1991) [Pubmed]
  22. Vitellogenin synthesis and characterisation of the liver estrogen receptor in the neotenous salamander Ambystoma mexicanum. May, F.E., Westley, B.R., Knowland, J. Dev. Biol. (1981) [Pubmed]
  23. Regulation by thyroid hormones of terminal differentiation in the skeletal dorsal muscle. II. Urodelan amphibians. Chanoine, C., d'Albis, A., Lenfant-Guyot, M., Janmot, C., Gallien, C.L. Dev. Biol. (1987) [Pubmed]
  24. Retinoic acid gradients during limb regeneration. Scadding, S.R., Maden, M. Dev. Biol. (1994) [Pubmed]
  25. Persistent activation of transducin by bleached rhodopsin in salamander rods. Matthews, H.R., Cornwall, M.C., Fain, G.L. J. Gen. Physiol. (1996) [Pubmed]
  26. Characterization of renal prolactin-binding sites of two amphibians (Ambystoma tigrinum and Rana catesbeiana) and a reptile (Pseudemys scripta elegans). Tarpey, J.F., Nicoll, C.S. J. Exp. Zool. (1987) [Pubmed]
  27. Molecular cloning from neurulating Ambystoma mexicanum embryos of the cDNA encoding an orphan nuclear receptor (aDOR1) closely related to TR2-11. Wirtanen, L., Huard, V., Séguin, C. Differentiation (1997) [Pubmed]
  28. Cloning of a cDNA for xDOR2, a novel TR2-related nuclear orphan receptor, expressed during neurulation in Xenopus laevis embryos. Huard, V., Séguin, C. DNA Seq. (1998) [Pubmed]
  29. Cloning and analysis of axolotl ISL2 and LHX2 LIM-homeodomain transcription factors. Showalter, A.D., Yaden, B.C., Chernoff, E.A., Rhodes, S.J. Genesis (2004) [Pubmed]
  30. Effects of prolactin, growth hormone, and triiodothyronine on prolactin receptors in larval and adult tiger salamanders (Ambystoma tigrinum). Bres, O., Nicoll, C.S. J. Exp. Zool. (1993) [Pubmed]
  31. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. Boron, W.F., Boulpaep, E.L. J. Gen. Physiol. (1983) [Pubmed]
  32. Thyroid hormone receptor genes of neotenic amphibians. Safi, R., Begue, A., Hänni, C., Stehelin, D., Tata, J.R., Laudet, V. J. Mol. Evol. (1997) [Pubmed]
  33. Paraboloid of axolotl retinal photoreceptor and bovine pituitary thyrotropin fraction share an antigen. Cuny, R., Eagleson, G.W. Exp. Neurol. (1988) [Pubmed]
  34. NMDA-mediated potentiation of the afferent synapse in the inner ear. Soto, E., Flores, A., Vega, R. Neuroreport (1994) [Pubmed]
  35. Ontogeny of the VIP system in the gastro-intestinal tract of the Axolotl, Ambystoma mexicanum: successive appearance of co-existing PACAP and NOS. Badawy, G., Reinecke, M. Anat. Embryol. (2003) [Pubmed]
 
WikiGenes - Universities