The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Killer Cells, Lymphokine-Activated

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Killer Cells, Lymphokine-Activated

 

High impact information on Killer Cells, Lymphokine-Activated

 

Chemical compound and disease context of Killer Cells, Lymphokine-Activated

 

Biological context of Killer Cells, Lymphokine-Activated

 

Anatomical context of Killer Cells, Lymphokine-Activated

 

Associations of Killer Cells, Lymphokine-Activated with chemical compounds

 

Gene context of Killer Cells, Lymphokine-Activated

  • In contrast to IL-2, BSF-1 failed to induce an LAK cell population, as detected with Daudi tumor targets, in cultures that had not been allosensitized [30].
  • IL-7 was found to induce the generation of both CTL and LAK cells in bulk cultures [31].
  • Both nonadherent and adherent populations of LAK cells express IL-1 beta mRNA; however, the adherent population produced more IL-1 beta mRNA and maintained its expression for a prolonged period of time [32].
  • The purpose of the studies reported here is to determine whether interleukin 1 (IL-1) plays an important role in the regulation of lymphokine-activated killer (LAK) cell induction [33].
  • These two BsAbs reacted well with both MUC1-positive target tumor cells and effector lymphokine-activated killer (LAK) cells [34].
 

Analytical, diagnostic and therapeutic context of Killer Cells, Lymphokine-Activated

  • We studied the effects of adoptive immunotherapy with lymphokine-activated killer (LAK) cells plus interleukin-2 or therapy with high-dose interleukin-2 alone in 157 patients with metastatic cancer for whom standard therapy had proved ineffective or no standard effective treatment was available [35].
  • These findings provide a rationale for clinical trials of the infusion of human LAK cells generated with recombinant IL-2 as well as Phase I trials of the infusion of recombinant IL-2 systemically into humans [2].
  • Interleukin-2 (IL-2) and lymphokine-activated killer (LAK) cells represent a potentially non-cross-resistant therapeutic modality that might prevent or delay relapses if used early after ABMT at a time when the tumor burden is minimal [36].
  • Twenty-eight cancer patients were treated for 5 consecutive days with low-dose rIL-2, followed by leukapheresis, infusion of LAK cells, and prolonged IL-2 administration [37].
  • Implementation of this procedure could eliminate the high cost of cell culture which normally accompanies IL-2/LAK cell therapy [38].

References

  1. Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. Atkins, M.B., Mier, J.W., Parkinson, D.R., Gould, J.A., Berkman, E.M., Kaplan, M.M. N. Engl. J. Med. (1988) [Pubmed]
  2. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Mulé, J.J., Shu, S., Schwarz, S.L., Rosenberg, S.A. Science (1984) [Pubmed]
  3. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. Rosenberg, S.A., Lotze, M.T., Yang, J.C., Topalian, S.L., Chang, A.E., Schwartzentruber, D.J., Aebersold, P., Leitman, S., Linehan, W.M., Seipp, C.A. J. Natl. Cancer Inst. (1993) [Pubmed]
  4. Nosocomial sepsis associated with interleukin-2. Snydman, D.R., Sullivan, B., Gill, M., Gould, J.A., Parkinson, D.R., Atkins, M.B. Ann. Intern. Med. (1990) [Pubmed]
  5. Effect of granulocyte-macrophage colony-stimulating factor on lymphokine-activated killer cell induction. Stewart-Akers, A.M., Cairns, J.S., Tweardy, D.J., McCarthy, S.A. Blood (1993) [Pubmed]
  6. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Heusel, J.W., Wesselschmidt, R.L., Shresta, S., Russell, J.H., Ley, T.J. Cell (1994) [Pubmed]
  7. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Meresse, B., Chen, Z., Ciszewski, C., Tretiakova, M., Bhagat, G., Krausz, T.N., Raulet, D.H., Lanier, L.L., Groh, V., Spies, T., Ebert, E.C., Green, P.H., Jabri, B. Immunity (2004) [Pubmed]
  8. The murine nonclassical class I major histocompatibility complex-like CD1.1 molecule protects target cells from lymphokine-activated killer cell cytolysis. Chang, C.S., Brossay, L., Kronenberg, M., Kane, K.P. J. Exp. Med. (1999) [Pubmed]
  9. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. Das, B., Mondragon, M.O., Sadeghian, M., Hatcher, V.B., Norin, A.J. J. Exp. Med. (1994) [Pubmed]
  10. Heat-shock proteins protect cells from monocyte cytotoxicity: possible mechanism of self-protection. Jäättelä, M., Wissing, D. J. Exp. Med. (1993) [Pubmed]
  11. Cardiorespiratory effects of immunotherapy with interleukin-2. Lee, R.E., Lotze, M.T., Skibber, J.M., Tucker, E., Bonow, R.O., Ognibene, F.P., Carrasquillo, J.A., Shelhamer, J.H., Parrillo, J.E., Rosenberg, S.A. J. Clin. Oncol. (1989) [Pubmed]
  12. Generation and partial characterization of melanoma sublines resistant to lymphokine activated killer (LAK) cells. Relevance to doxorubicin resistance. Rivoltini, L., Gambacorti-Passerini, C., Supino, R., Parmiani, G. Int. J. Cancer (1989) [Pubmed]
  13. Anti-estrogens enhance the therapeutic effect of lymphokine-activated killer cells on the P815 murine mastocytoma. Baral, E., Nagy, E., Kangas, L., Berczi, I. Int. J. Cancer (1996) [Pubmed]
  14. The role of human melanoma cell ICAM-1 expression on lymphokine activated killer cell-mediated lysis, and the effect of retinoic acid. Alexander, C.L., Edward, M., MacKie, R.M. Br. J. Cancer (1999) [Pubmed]
  15. Paradoxical effects of 5-FU/folinic acid on lymphokine-activated killer (LAK) cell induction in patients with colorectal cancer. Onodera, H., Somers, S.S., Guillou, P.J. Br. J. Cancer (1990) [Pubmed]
  16. An interleukin 2/sodium butyrate combination as immunotherapy for rat colon cancer peritoneal carcinomatosis. Perrin, P., Cassagnau, E., Burg, C., Patry, Y., Vavasseur, F., Harb, J., Le Pendu, J., Douillard, J.Y., Galmiche, J.P., Bornet, F. Gastroenterology (1994) [Pubmed]
  17. Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells. Shresta, S., MacIvor, D.M., Heusel, J.W., Russell, J.H., Ley, T.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  18. Possible mechanism of selective killing of myeloid leukemic blast cells by lymphokine-activated killer cells. Oblakowski, P., Bello-Fernandez, C., Reittie, J.E., Heslop, H.E., Galatowicz, G., Veys, P., Wilkes, S., Prentice, H.G., Hazlehurst, G., Hoffbrand, A.V. Blood (1991) [Pubmed]
  19. The 5' flanking region of the human granzyme H gene directs expression to T/natural killer cell progenitors and lymphokine-activated killer cells in transgenic mice. MacIvor, D.M., Pham, C.T., Ley, T.J. Blood (1999) [Pubmed]
  20. Interleukin-2 enhancement of monoclonal antibody-mediated cellular cytotoxicity against human melanoma. Munn, D.H., Cheung, N.K. Cancer Res. (1987) [Pubmed]
  21. Expression of perforin and serine esterases by human gamma/delta T cells. Koizumi, H., Liu, C.C., Zheng, L.M., Joag, S.V., Bayne, N.K., Holoshitz, J., Young, J.D. J. Exp. Med. (1991) [Pubmed]
  22. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. Rosenberg, S.A., Mulé, J.J., Spiess, P.J., Reichert, C.M., Schwarz, S.L. J. Exp. Med. (1985) [Pubmed]
  23. Coinduction of granulocyte-macrophage colony-stimulating factor release and lymphokine-activated killer cell susceptibility in monocytes by interleukin-2 via interleukin-2 receptor beta. Epling-Burnette, P.K., Wei, S., Blanchard, D.K., Spranzi, E., Djeu, J.Y. Blood (1993) [Pubmed]
  24. Human lymphokine activated killer (LAK) cells suppress generation of allospecific cytotoxic T cells: implications for use of LAK cells to prevent graft-versus-host disease in allogeneic bone marrow transplantation. Uberti, J., Martilotti, F., Chou, T.H., Kaplan, J. Blood (1992) [Pubmed]
  25. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. Mazumder, A., Rosenberg, S.A. J. Exp. Med. (1984) [Pubmed]
  26. In vitro and in vivo effects of cisplatin on the generation of lymphokine-activated killer cells. Allavena, P., Pirovano, P., Bonazzi, C., Colombo, N., Mantovani, A., D'Incalci, M. J. Natl. Cancer Inst. (1990) [Pubmed]
  27. Pilot study of interleukin-2 and lymphokine-activated killer cells combined with immunomodulatory doses of chemotherapy and sequenced with interferon alfa-2a in patients with metastatic melanoma and renal cell carcinoma. Sznol, M., Clark, J.W., Smith, J.W., Steis, R.G., Urba, W.J., Rubinstein, L.V., VanderMolen, L.A., Janik, J., Sharfman, W.H., Fenton, R.G. J. Natl. Cancer Inst. (1992) [Pubmed]
  28. Increased vascular permeability in organs mediated by the systemic administration of lymphokine-activated killer cells and recombinant interleukin-2 in mice. Ettinghausen, S.E., Puri, R.K., Rosenberg, S.A. J. Natl. Cancer Inst. (1988) [Pubmed]
  29. Stimulation of lymphocyte natural cytotoxicity by L-arginine. Park, K.G., Hayes, P.D., Garlick, P.J., Sewell, H., Eremin, O. Lancet (1991) [Pubmed]
  30. Regulation of cytolytic cell populations from human peripheral blood by B cell stimulatory factor 1 (interleukin 4). Widmer, M.B., Acres, R.B., Sassenfeld, H.M., Grabstein, K.H. J. Exp. Med. (1987) [Pubmed]
  31. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood. Alderson, M.R., Sassenfeld, H.M., Widmer, M.B. J. Exp. Med. (1990) [Pubmed]
  32. Cytokine gene expression during the generation of human lymphokine-activated killer cells: early induction of interleukin 1 beta by interleukin 2. Kovacs, E.J., Beckner, S.K., Longo, D.L., Varesio, L., Young, H.A. Cancer Res. (1989) [Pubmed]
  33. Specific inhibition of interleukin 1 beta gene expression by an antisense oligonucleotide: obligatory role of interleukin 1 in the generation of lymphokine-activated killer cells. Fujiwara, T., Grimm, E.A. Cancer Res. (1992) [Pubmed]
  34. MUC1-specific targeting immunotherapy with bispecific antibodies: inhibition of xenografted human bile duct carcinoma growth. Katayose, Y., Kudo, T., Suzuki, M., Shinoda, M., Saijyo, S., Sakurai, N., Saeki, H., Fukuhara, K., Imai, K., Matsuno, S. Cancer Res. (1996) [Pubmed]
  35. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. Rosenberg, S.A., Lotze, M.T., Muul, L.M., Chang, A.E., Avis, F.P., Leitman, S., Linehan, W.M., Robertson, C.N., Lee, R.E., Rubin, J.T. N. Engl. J. Med. (1987) [Pubmed]
  36. Toxicity and immunomodulatory effects of interleukin-2 after autologous bone marrow transplantation for hematologic malignancies. Higuchi, C.M., Thompson, J.A., Petersen, F.B., Buckner, C.D., Fefer, A. Blood (1991) [Pubmed]
  37. Adoptive immunotherapy of human cancer using low-dose recombinant interleukin 2 and lymphokine-activated killer cells. Schoof, D.D., Gramolini, B.A., Davidson, D.L., Massaro, A.F., Wilson, R.E., Eberlein, T.J. Cancer Res. (1988) [Pubmed]
  38. Generation of human lymphokine-activated killer cells following brief exposure to high dose interleukin 2. Horton, S.A., Oldham, R.K., Yannelli, J.R. Cancer Res. (1990) [Pubmed]
 
WikiGenes - Universities