The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Gap43  -  growth associated protein 43

Rattus norvegicus

Synonyms: Axonal membrane protein GAP-43, Growth-associated protein 43, Neuromodulin, Protein F1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Gap43


Psychiatry related information on Gap43

  • These results further strengthen the involvement of NAc and VTA in the behavioural sensitization and suggest a role of GAP-43 in the synaptic reorganization associated to drug abuse [5].

High impact information on Gap43


Chemical compound and disease context of Gap43


Biological context of Gap43

  • Here we report that overexpression of HuD protein in PC12 cells stabilizes the GAP-43 mRNA by delaying the onset of mRNA degradation and that this process depends on the size of the poly(A) tail [13].
  • In the present study we measured the expression of select proteins associated with neurite damage and plasticity (MAP-2 and GAP-43) as well as cell cycle (cyclin D1) after induction of focal cerebral ischemia in the rat [2].
  • Repetitive daily exposure to static magnetic fields at 100 mT for 15 min led to a decrease in the expression of MAP-2, without significantly affecting cell viability or the expression of neuronal nuclei (NeuN) and GAP-43 [14].
  • Protein F1 is a neuron-specific, synaptic-enriched, membrane-bound substrate of protein kinase C (PKC) whose phosphorylation is related to synaptic plasticity in the adult [15].
  • Genetic or pharmacological inactivation of PKCalpha abolishes nELAV protein cytoskeletal up-regulation, GAP-43 mRNA stabilization, and GAP-43 protein increase, demonstrating the primary role of this specific PKC isozyme in the cascade of nELAV recruitment [16].

Anatomical context of Gap43


Associations of Gap43 with chemical compounds


Physical interactions of Gap43

  • We conclude that HuD stabilizes the GAP-43 mRNA through a mechanism that is dependent on the length of the poly(A) tail and involves changes in its affinity for the mRNA [13].
  • The time course for accumulation of FKBP-12 in sciatic nerve segments following nerve crush indicates rapid axonal transport at a rate similar to GAP-43 [23].

Enzymatic interactions of Gap43

  • Calmodulin and de-phosphorylated B-50/growth-associated protein-43 (GAP-43) have been shown to bind in vitro in a molecular complex, but evidence for an in situ association in the nervous system does not exist [24].
  • We reported previously that phosphorylated neuromodulin and phosphorylated synapsin I content increased in the striata of amphetamine-sensitized rats; however, the neuronal pathways responsible for the increase were unclear [25].

Co-localisations of Gap43


Regulatory relationships of Gap43


Other interactions of Gap43


Analytical, diagnostic and therapeutic context of Gap43


  1. Expression of activating transcription factor 3 and growth-associated protein 43 in the rat geniculate ganglion neurons after chorda tympani injury. Tsuzuki, K., Noguchi, K., Mohri, D., Yasuno, H., Umemoto, M., Shimobayashi, C., Fukazawa, K., Sakagami, M. Acta Otolaryngol. (2002) [Pubmed]
  2. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Li, Y., Jiang, N., Powers, C., Chopp, M. Stroke (1998) [Pubmed]
  3. Collateral sprouting mechanism after end-to-side nerve repair in the rat. Yamauchi, T., Maeda, M., Tamai, S., Tamai, M., Yajima, H., Takakura, Y., Haga, S., Yamamoto, H. Medical electron microscopy : official journal of the Clinical Electron Microscopy Society of Japan. (2000) [Pubmed]
  4. GAP-43 mRNA and protein expression in the hippocampal and parahippocampal region during the course of epileptogenesis in rats. Tolner, E.A., van Vliet, E.A., Holtmaat, A.J., Aronica, E., Witter, M.P., da Silva, F.H., Gorter, J.A. Eur. J. Neurosci. (2003) [Pubmed]
  5. A single high dose of cocaine induces behavioural sensitization and modifies mRNA encoding GluR1 and GAP-43 in rats. Grignaschi, G., Burbassi, S., Zennaro, E., Bendotti, C., Cervo, L. Eur. J. Neurosci. (2004) [Pubmed]
  6. Targeting of neuromodulin (GAP-43) fusion proteins to growth cones in cultured rat embryonic neurons. Liu, Y.C., Chapman, E.R., Storm, D.R. Neuron (1991) [Pubmed]
  7. Neuromodulin (GAP43): a neuronal protein kinase C substrate is also present in 0-2A glial cell lineage. Characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen. Deloulme, J.C., Janet, T., Au, D., Storm, D.R., Sensenbrenner, M., Baudier, J. J. Cell Biol. (1990) [Pubmed]
  8. Regulation of immunoreactive GAP-43 expression in rat cortical macroglia is cell type specific. da Cunha, A., Vitković, L. J. Cell Biol. (1990) [Pubmed]
  9. Increase of GAP-43 in the rat cerebellum following unilateral striatal 6-OHDA lesion. Perović, M., Mladenović, A., Rakić, L., Ruzdijić, S., Kanazir, S. Synapse (2005) [Pubmed]
  10. Changes in lectin, GAP-43 and neuropeptide staining in the rat superficial dorsal horn following experimental peripheral neuropathy. Cameron, A.A., Cliffer, K.D., Dougherty, P.M., Willis, W.D., Carlton, S.M. Neurosci. Lett. (1991) [Pubmed]
  11. Developmental expression of GAP43 mRNA in chromaffin cells and intra-adrenal neurons. Holgert, H. Neuroreport (1995) [Pubmed]
  12. Glutamate N-methyl-D-aspartate receptor blockade prevents induction of GAP-43 after focal ischemia in rats. Luque, J.M., Puig, N., Martínez, J.M., González-García, C., Ceña, V. Neurosci. Lett. (2001) [Pubmed]
  13. Poly(A) tail length-dependent stabilization of GAP-43 mRNA by the RNA-binding protein HuD. Beckel-Mitchener, A.C., Miera, A., Keller, R., Perrone-Bizzozero, N.I. J. Biol. Chem. (2002) [Pubmed]
  14. Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons. Hirai, T., Taniura, H., Goto, Y., Tamaki, K., Oikawa, H., Kambe, Y., Ogura, M., Ohno, Y., Takarada, T., Yoneda, Y. J. Neurosci. Res. (2005) [Pubmed]
  15. Primary structure and mRNA localization of protein F1, a growth-related protein kinase C substrate associated with synaptic plasticity. Rosenthal, A., Chan, S.Y., Henzel, W., Haskell, C., Kuang, W.J., Chen, E., Wilcox, J.N., Ullrich, A., Goeddel, D.V., Routtenberg, A. EMBO J. (1987) [Pubmed]
  16. Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway. Pascale, A., Amadio, M., Scapagnini, G., Lanni, C., Racchi, M., Provenzani, A., Govoni, S., Alkon, D.L., Quattrone, A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  17. Developmental profiles of growth-associated protein (Gap43), Ngfb, Bndf and Ntf4 mRNA levels in the rat forebrain after exposure to 60 Hz magnetic fields. Harry, G.J., Bartenbach, M., Haines, W., Bruccoleri, A. Radiat. Res. (2000) [Pubmed]
  18. Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein-43 and microtubule-associated protein 2 mRNA expression in the rat hippocampus. Kuroda, Y., McEwen, B.S. Brain Res. Mol. Brain Res. (1998) [Pubmed]
  19. Effects of neuronal proteoglycans on activity-dependent growth responses of fetal hippocampal neurons. Wang, W., Dow, K.E. Brain Res. Mol. Brain Res. (1997) [Pubmed]
  20. Dentate granule cell layer collagen explant cultures: spontaneous axonal growth and induction by brain-derived neurotrophic factor or basic fibroblast growth factor. Lowenstein, D.H., Arsenault, L. Neuroscience (1996) [Pubmed]
  21. Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Rune, G.M., Frotscher, M. Neuroscience (2005) [Pubmed]
  22. Differential responses of protein kinase C substrates (MARCKS, neuromodulin, and neurogranin) phosphorylation to calmodulin and S100. Sheu, F.S., Huang, F.L., Huang, K.P. Arch. Biochem. Biophys. (1995) [Pubmed]
  23. Neuronal regeneration enhances the expression of the immunophilin FKBP-12. Lyons, W.E., Steiner, J.P., Snyder, S.H., Dawson, T.M. J. Neurosci. (1995) [Pubmed]
  24. Ultrastructural co-localization of calmodulin and B-50/growth-associated protein-43 at the plasma membrane of proximal unmyelinated axon shafts studied in the model of the regenerating rat sciatic nerve. Verkade, P., Schrama, L.H., Verkleij, A.J., Gispen, W.H., Oestreicher, A.B. Neuroscience (1997) [Pubmed]
  25. Quantification of neuromodulin (GAP-43, B-50) and synapsin I in rat striata. Iwata, S., Nomoto, M., Fukuda, T. Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology. (1999) [Pubmed]
  26. Co-localization of substance P and dopamine beta-hydroxylase with growth-associated protein-43 is lost caudal to a spinal cord transection. Cassam, A.K., Rogers, K.A., Weaver, L.C. Neuroscience (1999) [Pubmed]
  27. Induction and axonal localization of epithelial/epidermal fatty acid-binding protein in retinal ganglion cells are associated with axon development and regeneration. Allen, G.W., Liu, J., Kirby, M.A., De León, M. J. Neurosci. Res. (2001) [Pubmed]
  28. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. Qiu, J., Cafferty, W.B., McMahon, S.B., Thompson, S.W. J. Neurosci. (2005) [Pubmed]
  29. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity. Chan, S.Y., Murakami, K., Routtenberg, A. J. Neurosci. (1986) [Pubmed]
  30. TGF-beta s and cAMP regulate GAP-43 expression in Schwann cells and reveal the association of this protein with the trans-Golgi network. Stewart, H.J., Curtis, R., Jessen, K.R., Mirsky, R. Eur. J. Neurosci. (1995) [Pubmed]
  31. Intracisternal antisense oligonucleotide to growth associated protein-43 blocks the recovery-promoting effects of basic fibroblast growth factor after focal stroke. Kawamata, T., Ren, J., Cha, J.H., Finklestein, S.P. Exp. Neurol. (1999) [Pubmed]
  32. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Kwon, B.K., Liu, J., Messerer, C., Kobayashi, N.R., McGraw, J., Oschipok, L., Tetzlaff, W. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  33. Borna disease virus persistent infection activates mitogen-activated protein kinase and blocks neuronal differentiation of PC12 cells. Hans, A., Syan, S., Crosio, C., Sassone-Corsi, P., Brahic, M., Gonzalez-Dunia, D. J. Biol. Chem. (2001) [Pubmed]
  34. Effects of systemically administered NT-3 on sensory neuron loss and nestin expression following axotomy. Kuo, L.T., Simpson, A., Schänzer, A., Tse, J., An, S.F., Scaravilli, F., Groves, M.J. J. Comp. Neurol. (2005) [Pubmed]
  35. Effect of chronic intermittent restraint stress on hippocampal expression of marker proteins for synaptic plasticity and progenitor cell proliferation in rats. Rosenbrock, H., Koros, E., Bloching, A., Podhorna, J., Borsini, F. Brain Res. (2005) [Pubmed]
  36. Growth associated protein-43 mRNA expression in nucleus ambiguus motoneurons after recurrent laryngeal nerve injury in the rat. Uno, T., Shogaki, K., Bamba, H., Koike, S., Naruse, Y., Ijima, N., Tanaka, M., Hisa, Y. Acta Otolaryngol. (2003) [Pubmed]
  37. Growth-associated protein-43 immunohistochemical and ultrastructural changes in jaw muscle spindles of the rat following loss of occlusion. Santiwong, P., Muramoto, T., Soma, K., Takano, Y. Arch. Oral Biol. (2002) [Pubmed]
WikiGenes - Universities