The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CCRIS 9375     dioxouranium; ethanoic acid

Synonyms: URANYL ACETATE, HSDB 1017, LS-158713, BRN 3940695, 73943_FLUKA, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Diacetatodioxouranium

  • The preservation of the spherical shape of the virus was obtained by glutaraldehyde fixation dehydration in alcholic solutions of uranyl acetate, and critical point drying [1].
  • Possible involvement of myofibroblasts in cellular recovery of uranyl acetate-induced acute renal failure in rats [2].
  • Micrographs of one of the views of the large Escherichia coli subunit negatively stained with uranyl acetate were computer averaged using two techniques: the maximum-likelihood method and the correlation method [3].
  • The study was performed to elucidate the progression and regression of superficial and inner glomerular alterations in uranyl acetate-induced renal failure in rabbits [4].
  • We have determined the ultrastructure of 5-hydroxytryptamine3 (5-HT3) serotonin receptors purified from NG108-15 mouse neuroblastoma x rat glioma cells by electron microscopic examination of receptor particles embedded in uranyl acetate stain and metal replicas of rapidly frozen receptors [5].
 

Psychiatry related information on Diacetatodioxouranium

 

High impact information on Diacetatodioxouranium

  • Using A-filaments prepared from rat psoas muscle we have now found it possible to induce clear fraying of these filaments into subfilaments, by exposure of the preparation to very low ionic strength before contrasting with uranyl acetate [7].
  • When ultrathin frozen sections of chicken cardiac muscle were osmicated, dehydrated in ethanol, embedded in ethyl cellulose, and stained with acidic uranyl acetate, filaments of 10-12 nm width were visualized in wide interfibrillar spaces [8].
  • Micrographs of mouse liver gap junctions, isolated with detergents, and negatively stained with uranyl acetate, have been recorded by low-irradiation methods [9].
  • For a 500-1,000-A biological tissue section fixed with OsO4 and stained with uranyl acetate, we obtained resolution (half distance, HD) values of approximately 800 +/- 120 A using Ilford L4 emulsion and 500 +/- 70 A using a Kodak NTE-type emulsion [10].
  • Negative staining with uranyl acetate revealed no differences in gametic and vegetative flagellar surfaces; both had flagellar membranes, flagellar sheaths, and similar numbers and distributions of mastigonemes [11].
 

Chemical compound and disease context of Diacetatodioxouranium

 

Biological context of Diacetatodioxouranium

 

Anatomical context of Diacetatodioxouranium

  • Spread chromatin fibers and isolated chromatin fragments prepared from chicken erythrocyte nuclei were stained with dilute aqueous uranyl acetate [21].
  • ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained [22].
  • We recently reported that transient appearance of interstitial myofibroblasts and infiltrating macrophages might play a role in cellular recovery in uranyl acetate (UA)-induced acute renal failure (ARF) [12].
  • When sections from the cerebral cortex of 5 normal rats and 2 normal monkeys were stained with saturated aqueous uranyl acetate (without block staining) and examined with the electron microscope, all 7 animal brains showed abundant membrane lamellation between apposed neuronal and neuroglial processes [23].
  • Actin microfilaments form a distinct laminar core within the ridge; they are seen as a sparse, disordered meshwork in cytoskeletons prepared by conventional methods using uranyl acetate negative staining [10] [24].
 

Associations of Diacetatodioxouranium with other chemical compounds

 

Gene context of Diacetatodioxouranium

 

Analytical, diagnostic and therapeutic context of Diacetatodioxouranium

References

  1. The morphology of murine oncornaviruses following different methods of preparation for electron microscopy. Sarkar, N.H., Manthey, W.J., Sheffield, J.B. Cancer Res. (1975) [Pubmed]
  2. Possible involvement of myofibroblasts in cellular recovery of uranyl acetate-induced acute renal failure in rats. Sun, D.F., Fujigaki, Y., Fujimoto, T., Yonemura, K., Hishida, A. Am. J. Pathol. (2000) [Pubmed]
  3. Computer averaging of 50 S ribosomal subunit electron micrographs. Kiseley, N.A., Orlova, E.V., Stel'maschuk VYa, n.u.l.l., Vasiliev, V.D., Selivanova, O.M., Kosykh, V.P., Pustovskikh, A.I., Kirichuk, V.S. J. Mol. Biol. (1983) [Pubmed]
  4. Glomerular alterations in uranyl acetate-induced acute renal failure in rabbits. Kobayashi, S., Nagase, M., Honda, N., Hishida, A. Kidney Int. (1984) [Pubmed]
  5. Ultrastructure of the 5-hydroxytryptamine3 receptor. Boess, F.G., Beroukhim, R., Martin, I.L. J. Neurochem. (1995) [Pubmed]
  6. Immunogold light and electron microscopic detection of amyloid plaques in transmissible spongiform encephalopathies. Doerr-Schott, J., Kitamoto, T., Tateishi, J., Boellaard, J.W., Heldt, N., Lichte, C. Neuropathol. Appl. Neurobiol. (1990) [Pubmed]
  7. Fraying of A-filaments into three subfilaments. Maw, M.C., Rowe, A.J. Nature (1980) [Pubmed]
  8. Visualization of longitudinally-oriented intermediate filaments in frozen sections of chicken cardiac muscle by a new staining method. Tokuyasu, K.T. J. Cell Biol. (1983) [Pubmed]
  9. Gap junction structures. IV. Asymmetric features revealed by low-irradiation microscopy. Baker, T.S., Caspar, D.L., Hollingshead, C.J., Goodenough, D.A. J. Cell Biol. (1983) [Pubmed]
  10. Resolution in electron microscope autoradiography. III. Iodine-125, the effect of heavy metal staining, and a reassessment of critical parameters. Salpeter, M.M., Fertuck, H.C., Salpeter, E.E. J. Cell Biol. (1977) [Pubmed]
  11. Mating in Chlamydomonas: a system for the study of specific cell adhesion. I. Ultrastructural and electrophoretic analyses of flagellar surface components involved in adhesion. Snell, W.J. J. Cell Biol. (1976) [Pubmed]
  12. Mycophenolate mofetil inhibits regenerative repair in uranyl acetate-induced acute renal failure by reduced interstitial cellular response. Sun, D.F., Fujigaki, Y., Fujimoto, T., Goto, T., Yonemura, K., Hishida, A. Am. J. Pathol. (2002) [Pubmed]
  13. Tubulocisternal endoplasmic reticulum in human eccrine sweat glands. Baron, D.A., Briggman, J.V., Spicer, S.S. Lab. Invest. (1984) [Pubmed]
  14. Electron microscopy procedure influences detection of rotaviruses. Nakata, S., Petrie, B.L., Calomeni, E.P., Estes, M.K. J. Clin. Microbiol. (1987) [Pubmed]
  15. Ultrastructural effects of perfomic acid oxidation of epoxy-embedded tissue with and without early uranyl staining. Heath, E. Journal of microscopy. (1977) [Pubmed]
  16. The developmental toxicity of uranium in mice. Domingo, J.L., Paternain, J.L., Llobet, J.M., Corbella, J. Toxicology (1989) [Pubmed]
  17. Taste transduction mechanism: similar effects of various modifications of gustatory receptors on neural responses to chemical and electrical stimulation in the frog. Kashiwayanagi, M., Yoshii, K., Kobatake, Y., Kurihara, K. J. Gen. Physiol. (1981) [Pubmed]
  18. Role of apoptosis in uranyl acetate-induced acute renal failure and acquired resistance to uranyl acetate. Sano, K., Fujigaki, Y., Miyaji, T., Ikegaya, N., Ohishi, K., Yonemura, K., Hishida, A. Kidney Int. (2000) [Pubmed]
  19. Renal hemodynamics in uranyl acetate-induced acute renal failure of rabbits. Sudo, M., Honda, N., Hishida, A., Nagase, M. Kidney Int. (1977) [Pubmed]
  20. Electron microscopy of G-banded human mitotic chromosomes. Xu, X., Wu, M. Chromosoma (1983) [Pubmed]
  21. Ultrastructural features of chromatin nu bodies. Olins, A.L., Senior, M.B., Olins, D.E. J. Cell Biol. (1976) [Pubmed]
  22. Chaperonin filaments: the archaeal cytoskeleton? Trent, J.D., Kagawa, H.K., Yaoi, T., Olle, E., Zaluzec, N.J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  23. Membrane lamellation in brain unrelated to spongiform encephalopathy. Gray, E.G. Brain (1985) [Pubmed]
  24. Improved negative staining of microfilament arrangements in detergent-extracted Physarum amoeboflagellates. Pagh, K.I., Vergara, J.A., Adelman, M.R. Exp. Cell Res. (1985) [Pubmed]
  25. Desulfovibrio desulfuricans G20 Tetraheme Cytochrome Structure at 1.5A and Cytochrome Interaction with Metal Complexes. Pattarkine, M.V., Tanner, J.J., Bottoms, C.A., Lee, Y.H., Wall, J.D. J. Mol. Biol. (2006) [Pubmed]
  26. Electron cryo-microscopic analysis of crystalline cytochrome oxidase. Valpuesta, J.M., Henderson, R., Frey, T.G. J. Mol. Biol. (1990) [Pubmed]
  27. Phakomatous choristoma of the eyelid. Immunohistochemical and electron microscopic observations. Rosenbaum, P.S., Kress, Y., Slamovits, T.L., Font, R.L. Ophthalmology (1992) [Pubmed]
  28. Morphometric study of cardiac muscle: the problem of tissue shrinkage. Gerdes, A.M., Kriseman, J., Bishop, S.P. Lab. Invest. (1982) [Pubmed]
  29. Sulfide silver stainability of a type of bouton in spinal cord motoneuron neuropil: an electron microscopic study with Timm's method for demonstration of heavy metals. Schrøder, H.D. J. Comp. Neurol. (1979) [Pubmed]
  30. Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: suitability for immunogold ultrastructural localization of neural antigens. van Lookeren Campagne, M., Oestreicher, A.B., van der Krift, T.P., Gispen, W.H., Verkleij, A.J. J. Histochem. Cytochem. (1991) [Pubmed]
  31. Heat shock proteins and acquired resistance to uranium nephrotoxicity. Tolson, J.K., Roberts, S.M., Jortner, B., Pomeroy, M., Barber, D.S. Toxicology (2005) [Pubmed]
  32. Filaments of surfactant protein A specifically interact with corrugated surfaces of phospholipid membranes. Palaniyar, N., Ridsdale, R.A., Hearn, S.A., Heng, Y.M., Ottensmeyer, F.P., Possmayer, F., Harauz, G. Am. J. Physiol. (1999) [Pubmed]
  33. Electron microscopic studies of free and proteinase-bound duck ovostatins (ovomacroglobulins). Model of ovostatin structure and its transformation upon proteolysis. Ruben, G.C., Harris, E.D., Nagase, H. J. Biol. Chem. (1988) [Pubmed]
  34. Molecular design of PhoE porin and its functional consequences. Jap, B.K. J. Mol. Biol. (1989) [Pubmed]
  35. Individual microtubules viewed by immunofluorescence and electron microscopy in the same PtK2 cell. Osborn, M., Webster, R.E., Weber, K. J. Cell Biol. (1978) [Pubmed]
  36. Ultrastructure of unit fragments of the skeleton of the human erythrocyte membrane. Shen, B.W., Josephs, R., Steck, T.L. J. Cell Biol. (1984) [Pubmed]
  37. Further characterization of brain actin by electron microscopy. Schwartz, J., Berl, S., Nicklas, W.J., Mahendran, C., Whetsell, W.O., Elizan, T.S. J. Neuropathol. Exp. Neurol. (1977) [Pubmed]
  38. High-pressure freezing provides new information on human epidermis: simultaneous protein antigen and lamellar lipid structure preservation. Study on human epidermis by cryoimmobilization. Pfeiffer, S., Vielhaber, G., Vietzke, J.P., Wittern, K.P., Hintze, U., Wepf, R. J. Invest. Dermatol. (2000) [Pubmed]
 
WikiGenes - Universities