The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

cannabidiol     2-[(6R)-3-methyl-6-prop-1-en- 2-yl-1...

Synonyms: CPD-7173, SureCN2229837, CHEBI:251386, LMPK13120001, LS-143406, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of cannabidiol

 

Psychiatry related information on cannabidiol

  • Additionally, the interactive effects of CBD and the antiepileptic drugs against maximal electroshock and audiogenic seizures were studied [5].
  • When given concomitantly, CBD-rich extracts did not reverse memory deficits of the additional Delta(9)-THC-rich extract [6].
  • Despite considerable amounts of Delta(9)-THC present, CBD-rich extracts had no effect on spatial working/short-term memory, even at doses of up to 50 mg/kg [6].
  • Since this effect was dose-dependent and indicative of memory enhancing qualities of the CBD-rich extract, this prompted a wider investigation into the effects of CBD on other forms of amnesia in order to determine the mechanism of action and to reveal its potency against anticholinergic and antiglutamatergic agents [7].
  • Plasma levels of cannabidiol (CBD) were ascertained weekly in 14 Huntington's disease patients undergoing a double-blind, placebo-controlled, crossover trial of oral CBD (10 mg/kg/day = about 700 mg/day) for 6 weeks [8].
 

High impact information on cannabidiol

 

Chemical compound and disease context of cannabidiol

 

Biological context of cannabidiol

 

Anatomical context of cannabidiol

 

Associations of cannabidiol with other chemical compounds

  • The cannabidiol analog O-1918 does not bind to CB(1) or CB(2) receptors and does not cause vasorelaxation at concentrations up to 30 microM, but it does cause concentration-dependent (1-30 microM) inhibition of the vasorelaxant effects of abn-cbd and anandamide [25].
  • Furthermore, cannabidiol-induced apoptosis and reactive oxygen species (ROS) levels could be blocked by treatment with the ROS scavengers or the NAD(P)H oxidase inhibitors [19].
  • We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice [26].
  • The effects of cannabidiol (CBD) were compared to those produced by haloperidol in rats submitted to experimental models predictive of antipsychotic activity [27].
  • Behavioral tests indicated that the CBD-mediated increases in the brain levels of THC, cocaine, and PCP correlated with increased pharmacological responses [28].
 

Gene context of cannabidiol

  • Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression [19].
  • CBD was also shown to decrease the measurable quantity of both IL-1 and TNF [29].
  • The results showed that MSC induced the antiestrogenic effect via the ER-mediated pathway, while THC, CBD, and CBN did not have any antiestrogenic activity [30].
  • Concentrations of THC and CBD, comparable to plasma levels found after smoking marijuana (10-100 ng/ml), increased the concentration of measurable IFN (139 and 68%), while high concentrations of both cannabinoids (5-20 micrograms/ml) completely blocked synthesis and/or release of this cytokine [29].
  • Macrophages from animals treated with cannabidiol at the dose of 30 mg kg(-1) either orally or i.p. produced higher levels of IL-12 and lower levels of IL-10 in comparison to controls, and the CB receptor antagonists did not prevent these effects [31].
 

Analytical, diagnostic and therapeutic context of cannabidiol

References

  1. Antineoplastic activity of cannabinoids. Munson, A.E., Harris, L.S., Friedman, M.A., Dewey, W.L., Carchman, R.A. J. Natl. Cancer Inst. (1975) [Pubmed]
  2. Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Hampson, A.J., Grimaldi, M., Axelrod, J., Wink, D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  3. G protein-coupled endothelial receptor for atypical cannabinoid ligands modulates a Ca2+-dependent K+ current. Begg, M., Mo, F.M., Offertaler, L., Bátkai, S., Pacher, P., Razdan, R.K., Lovinger, D.M., Kunos, G. J. Biol. Chem. (2003) [Pubmed]
  4. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Massi, P., Vaccani, A., Bianchessi, S., Costa, B., Macchi, P., Parolaro, D. Cell. Mol. Life Sci. (2006) [Pubmed]
  5. Cannabidiol--antiepileptic drug comparisons and interactions in experimentally induced seizures in rats. Consroe, P., Wolkin, A. J. Pharmacol. Exp. Ther. (1977) [Pubmed]
  6. Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats. Fadda, P., Robinson, L., Fratta, W., Pertwee, R.G., Riedel, G. Neuropharmacology (2004) [Pubmed]
  7. Scopolamine and MK801-induced working memory deficits in rats are not reversed by CBD-rich cannabis extracts. Fadda, P., Robinson, L., Fratta, W., Pertwee, R.G., Riedel, G. Behav. Brain Res. (2006) [Pubmed]
  8. Assay of plasma cannabidiol by capillary gas chromatography/ion trap mass spectroscopy following high-dose repeated daily oral administration in humans. Consroe, P., Kennedy, K., Schram, K. Pharmacol. Biochem. Behav. (1991) [Pubmed]
  9. Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Carrier, E.J., Auchampach, J.A., Hillard, C.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  10. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Járai, Z., Wagner, J.A., Varga, K., Lake, K.D., Compton, D.R., Martin, B.R., Zimmer, A.M., Bonner, T.I., Buckley, N.E., Mezey, E., Razdan, R.K., Zimmer, A., Kunos, G. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  11. Cannabinoid ligand-receptor signaling in the mouse uterus. Das, S.K., Paria, B.C., Chakraborty, I., Dey, S.K. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  12. Experimentally produced synovial sarcoma in mice. Szepsenwol, J., Fletcher, J., Casales, E.A., Murison, G.L. Oncology (1985) [Pubmed]
  13. Cannabidiol inhibits the hyperlocomotion induced by psychotomimetic drugs in mice. Moreira, F.A., Guimarães, F.S. Eur. J. Pharmacol. (2005) [Pubmed]
  14. Acute and subacute inhalation toxicity of Turkish marihuana, cannabichromene, and cannabidiol in rats. Rosenkrantz, H., Hayden, D.W. Toxicol. Appl. Pharmacol. (1979) [Pubmed]
  15. Neuroprotective antioxidants from marijuana. Hampson, A.J., Grimaldi, M., Lolic, M., Wink, D., Rosenthal, R., Axelrod, J. Ann. N. Y. Acad. Sci. (2000) [Pubmed]
  16. The effects of cannabinoids and cannabispiro compounds on Escherichia coli adhesion to tissue culture cells and on leukocyte functions in vitro. Molnár, J., Petri, I., Berek, I., Shoyama, Y., Nishioka, I. Acta Microbiol. Hung. (1987) [Pubmed]
  17. Neuroprotective effect of (-)Delta9-tetrahydrocannabinol and cannabidiol in N-methyl-D-aspartate-induced retinal neurotoxicity: involvement of peroxynitrite. El-Remessy, A.B., Khalil, I.E., Matragoon, S., Abou-Mohamed, G., Tsai, N.J., Roon, P., Caldwell, R.B., Caldwell, R.W., Green, K., Liou, G.I. Am. J. Pathol. (2003) [Pubmed]
  18. Influence of cannabidiol on secobarbital effects and plasma kinetics. Dalton, W.S., Martz, R., Rodda, B.E., Lemberger, L., Forney, R.B. Clin. Pharmacol. Ther. (1976) [Pubmed]
  19. Cannabidiol-induced apoptosis in human leukemia cells: A novel role of cannabidiol in the regulation of p22phox and Nox4 expression. McKallip, R.J., Jia, W., Schlomer, J., Warren, J.W., Nagarkatti, P.S., Nagarkatti, M. Mol. Pharmacol. (2006) [Pubmed]
  20. Acute and subacute bronchial effects of oral cannabinoids. Gong, H., Tashkin, D.P., Simmons, M.S., Calvarese, B., Shapiro, B.J. Clin. Pharmacol. Ther. (1984) [Pubmed]
  21. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. Iuvone, T., Esposito, G., Esposito, R., Santamaria, R., Di Rosa, M., Izzo, A.A. J. Neurochem. (2004) [Pubmed]
  22. Purification and characterization of a mouse liver cytochrome P-450 induced by cannabidiol. Bornheim, L.M., Correia, M.A. Mol. Pharmacol. (1989) [Pubmed]
  23. Hashish: synthesis and central nervous system activity of some novel analogues of cannabidiol and oxepin derivatives of delta 9-tetrahydrocannabinol. Jorapur, V.S., Khalil, Z.H., Duffley, R.P., Razdan, R.K., Martin, B.R., Harris, L.S., Dewey, W.L. J. Med. Chem. (1985) [Pubmed]
  24. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. Ligresti, A., Moriello, A.S., Starowicz, K., Matias, I., Pisanti, S., De Petrocellis, L., Laezza, C., Portella, G., Bifulco, M., Di Marzo, V. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
  25. Selective ligands and cellular effectors of a G protein-coupled endothelial cannabinoid receptor. Offertáler, L., Mo, F.M., Bátkai, S., Liu, J., Begg, M., Razdan, R.K., Martin, B.R., Bukoski, R.D., Kunos, G. Mol. Pharmacol. (2003) [Pubmed]
  26. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells. Kogan, N.M., Blázquez, C., Alvarez, L., Gallily, R., Schlesinger, M., Guzmán, M., Mechoulam, R. Mol. Pharmacol. (2006) [Pubmed]
  27. Effects of cannabidiol in animal models predictive of antipsychotic activity. Zuardi, A.W., Rodrigues, J.A., Cunha, J.M. Psychopharmacology (Berl.) (1991) [Pubmed]
  28. Cannabinoid-induced alterations in brain disposition of drugs of abuse. Reid, M.J., Bornheim, L.M. Biochem. Pharmacol. (2001) [Pubmed]
  29. Marijuana components stimulate human peripheral blood mononuclear cell secretion of interferon-gamma and suppress interleukin-1 alpha in vitro. Watzl, B., Scuderi, P., Watson, R.R. Int. J. Immunopharmacol. (1991) [Pubmed]
  30. Antiestrogenic effects of marijuana smoke condensate and cannabinoid compounds. Lee, S.Y., Oh, S.M., Lee, S.K., Chung, K.H. Arch. Pharm. Res. (2005) [Pubmed]
  31. The nonpsychoactive component of marijuana cannabidiol modulates chemotaxis and IL-10 and IL-12 production of murine macrophages both in vivo and in vitro. Sacerdote, P., Martucci, C., Vaccani, A., Bariselli, F., Panerai, A.E., Colombo, A., Parolaro, D., Massi, P. J. Neuroimmunol. (2005) [Pubmed]
  32. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Malfait, A.M., Gallily, R., Sumariwalla, P.F., Malik, A.S., Andreakos, E., Mechoulam, R., Feldmann, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  33. Excitatory and depressant effects of delta 9-tetrahydrocannabinol and cannabidiol on cortical evoked responses in the conscious rat. Turkanis, S.A., Karler, R. Psychopharmacology (Berl.) (1981) [Pubmed]
  34. Determination of cannabidiol in plasma by electron-capture gas chromatography. Jones, A.B., Elsohly, M.A., Bedford, J.A., Turner, C.E. J. Chromatogr. (1981) [Pubmed]
 
WikiGenes - Universities