The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Sovcaine     2-butoxy-N-(2- diethylaminoethyl)quinoline...

Synonyms: Dibucain, Cincain, Cincainum, Percamine, dibucaine, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Sovcaine


High impact information on Sovcaine

  • Asp70 to Gly substitution characteristic of 'atypical' BCHE, failed to alter its Km towards BTCh or dibucaine binding but reduced hydrolytic activity to 25% of control [6].
  • This release of fatty acids was partially inhibited by dibucaine, the phospholipase A2 inhibitor, which we have previously shown to protect mitochondria against damage associated with Ca2+ and reactive oxygen species [7].
  • Structural difference at the active site of dibucaine resistant variant of human plasma cholinesterase [8].
  • However, chlorpromazine, TMB 8, and dibucaine, which interfere with intracellular membrane transport of Ca2+, inhibited this platelet activation (change in LT, 14C-5HT release and TX synthesis [9].
  • Extracellular Ca2+ chelation (EGTA) and PLA2 inhibitor therapy (aristolochic acid, dibucaine, or mepacrine) each conferred significant protective effects [10].

Chemical compound and disease context of Sovcaine


Biological context of Sovcaine

  • Another type of substitution, that of Asp-74 by Gly or Asn, generated an active enzyme with increased resistance to succinylcholine and dibucaine; thus mimicking in an AChE molecule the phenotype of the atypical butyrylcholinesterase natural variant (D70G mutation) [16].
  • Uptake of dibucaine into large unilamellar vesicles in response to a membrane potential [17].
  • First, treatment of whole cells in a complete media with dibucaine caused precursor cleavage and product accumulation with kinetics that were consistent with previous morphologic observations on mucocyst formation [18].
  • The stage of virus assembly inhibited by colchicine and dibucaine was studied by experiments with [3H]-leucine or [35S]methionine [2].
  • [3H]Me-TRH binding was inhibited by classical local anesthetics with the order of potency (IC50 values): dibucaine (0.37 mM) greater than tetracaine (1.2 mM) greater than lidocaine (3.3 mM) greater than procaine and benzocaine (greater than 10 mM) [19].

Anatomical context of Sovcaine


Associations of Sovcaine with other chemical compounds


Gene context of Sovcaine

  • Inhibition of Bax-induced cytochrome c release from neural cell and brain mitochondria by dibucaine and propranolol [29].
  • Treatment of human platelets with A23187 and dibucaine, activators of calpain, caused cleavage of actin-binding protein and talin in a time-dependent manner [30].
  • Unusual results for dibucaine inhibition led to the recognition of a new allele (E1k) also segregating in these families [31].
  • For dibucaine, the enthalpy of transfer was smaller with delta H approximately -2 kcal/mol but was still about one-third of the total free energy change [32].
  • [3H]PCP binding was inhibited by chlorpromazine (IC50 = 6.3 x 10(-5)M), tetracaine (IC50 = 4.2 x 10(-6)M), and dibucaine (IC50 = 2.7 x 10(-4)M) [33].

Analytical, diagnostic and therapeutic context of Sovcaine

  • Fourth, one-dimensional peptide mapping of the 45-kilodalton product confirmed that the post-translationally derived product in whole cell pulse-chase experiments was similar to the purified products in the cortex fraction and in dibucaine-released mucus [18].
  • Membrane-free trichocyst contents were isolated by density gradient centrifugation; they are converted from the contracted to the expanded state by Dibucain, CTMAB and CPC, and also by exogenous ATPase (Apyrase) [34].
  • A water-soluble three-layered oral mucosa-adhesive film made from hydroxypropyl cellulose containing dibucaine (0.25 mg of drug/cm(2)) was designed for alleviation of severe pain due to oral ulcers, caused by chemotherapy and/or radiotherapy [5].
  • Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies [35].
  • LDH leakage was markedly suppressed by perfusion at 25 degrees C or with 0.1 mM dibucaine or 2 mM lidocaine [36].


  1. Effects of tertiary amine local anesthetics on the blood-borne implantation and cell surface properties of metastatic mouse melanoma cells. Nicolson, G.L., Fidler, I.J., Poste, G. J. Natl. Cancer Inst. (1986) [Pubmed]
  2. The effect of colchicine and dibucaine on the morphogenesis of Semliki Forest virus. Richardson, C.D., Vance, D.E. J. Biol. Chem. (1978) [Pubmed]
  3. Chemical cross-linking of proteins of Semliki Forest virus: virus particles and plasma membranes from BHK-21 cells treated with colchicine or dibucaine. Richardson, C.D., Vance, D.E. J. Virol. (1978) [Pubmed]
  4. Induction of apoptotic cell death in a neuroblastoma cell line by dibucaine. Kim, M., Lee, Y.S., Mathews, H.L., Wurster, R.D. Exp. Cell Res. (1997) [Pubmed]
  5. Pain relief of oral ulcer by dibucaine-film. Yamamura, K., Yotsuyanagi, T., Okamoto, T., Nabeshima, T. Pain (1999) [Pubmed]
  6. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. Neville, L.F., Gnatt, A., Loewenstein, Y., Seidman, S., Ehrlich, G., Soreq, H. EMBO J. (1992) [Pubmed]
  7. Incorporation of marine lipids into mitochondrial membranes increases susceptibility to damage by calcium and reactive oxygen species: evidence for enhanced activation of phospholipase A2 in mitochondria enriched with n-3 fatty acids. Malis, C.D., Weber, P.C., Leaf, A., Bonventre, J.V. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  8. Structural difference at the active site of dibucaine resistant variant of human plasma cholinesterase. Muensch, H., Yoshida, A., Altland, K., Jensen, W., Goedde, H.W. Am. J. Hum. Genet. (1978) [Pubmed]
  9. Human platelet activation in the absence of aggregation: a calcium-dependent phenomenon independent of thromboxane formation. Levy-Toledano, S., Maclouf, J., Bryon, P., Savariau, E., Hardisty, R.M., Caen, J.P. Blood (1982) [Pubmed]
  10. Inorganic fluoride. Divergent effects on human proximal tubular cell viability. Zager, R.A., Iwata, M. Am. J. Pathol. (1997) [Pubmed]
  11. Photosensitivity reaction to dibucaine. Case report and experimental induction. Horio, T. Archives of dermatology. (1979) [Pubmed]
  12. Overexpression of regucalcin suppresses cell death and apoptosis in cloned rat hepatoma H4-II-E cells induced by lipopolysaccharide, PD 98059, dibucaine, or Bay K 8644. Izumi, T., Yamaguchi, M. J. Cell. Biochem. (2004) [Pubmed]
  13. Membrane effects of trifluoperazine, dibucaine and praziquantel on human erythrocytes. Malheiros, S.V., Brito, M.A., Brites, D., Meirelles, N.C. Chem. Biol. Interact. (2000) [Pubmed]
  14. Destabilization of herpes simplex virus type 1 virions by local anesthetics, alkaline pH, and calcium depletion. Yanagi, K., Harada, S. Arch. Virol. (1989) [Pubmed]
  15. Allergic contact dermatitis from dibucaine in Proctosedyl ointment without cross-sensitivity. Lee, A.Y. Contact Derm. (1998) [Pubmed]
  16. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. Shafferman, A., Kronman, C., Flashner, Y., Leitner, M., Grosfeld, H., Ordentlich, A., Gozes, Y., Cohen, S., Ariel, N., Barak, D. J. Biol. Chem. (1992) [Pubmed]
  17. Uptake of dibucaine into large unilamellar vesicles in response to a membrane potential. Mayer, L.D., Bally, M.B., Hope, M.J., Cullis, P.R. J. Biol. Chem. (1985) [Pubmed]
  18. Post-translational cleavage of mucocyst precursors in Tetrahymena. Collins, T., Wilhelm, J.M. J. Biol. Chem. (1981) [Pubmed]
  19. Pituitary thyrotropin-releasing hormone receptors: local anesthetic effects on binding and responses. Phillips, W.J., Enyeart, J.J., Hinkle, P.M. Mol. Endocrinol. (1989) [Pubmed]
  20. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. Fox, J.E., Austin, C.D., Reynolds, C.C., Steffen, P.K. J. Biol. Chem. (1991) [Pubmed]
  21. Local anesthetics induce fast Ca2+ efflux through a nonenergized state of the sarcoplasmic reticulum Ca(2+)-ATPase. Wolosker, H., Pacheco, A.G., de Meis, L. J. Biol. Chem. (1992) [Pubmed]
  22. Isolation and genetic characterization of dibucaine-resistant variants of a mouse lymphocytic cell line. Vaughan, V.L., Stadler, J.K. Exp. Cell Res. (1980) [Pubmed]
  23. Interaction of dibucaine and calcium ion on a calcium pump reconstituted from defined components of intestinal brush border. Kurebe, M. Mol. Pharmacol. (1978) [Pubmed]
  24. Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze-fracture technique, cilia, membrane structure. Satir, B., Sale, W.S., Satir, P. Exp. Cell Res. (1976) [Pubmed]
  25. Frequency of butyrylcholinesterase gene mutations in individuals with abnormal inhibition numbers: an Italian-population study. Lando, G., Mosca, A., Bonora, R., Azzario, F., Penco, S., Marocchi, A., Panteghini, M., Patrosso, M.C. Pharmacogenetics (2003) [Pubmed]
  26. DNA damage induced by bleomycin in the presence of dibucaine is not predictive of cell growth inhibition. Berry, D.E., Kilkuskie, R.E., Hecht, S.M. Biochemistry (1985) [Pubmed]
  27. The relationship of calcium to receptor-controlled stimulation of phosphatidylinositol turnover. Effects of acetylcholine, adrenaline, calcium ions, cinchocaine and a bivalent cation ionophore on rat parotid-gland fragments. Jones, L.M., Michell, R.H. Biochem. J. (1975) [Pubmed]
  28. Functional significance of nitric oxide in ionomycin-evoked [3H]GABA release from mouse cerebral cortical neurons. Katsura, M., Shuto, K., Mohri, Y., Shigeto, M., Ohkuma, S. J. Neurochem. (2002) [Pubmed]
  29. Inhibition of Bax-induced cytochrome c release from neural cell and brain mitochondria by dibucaine and propranolol. Polster, B.M., Basañez, G., Young, M., Suzuki, M., Fiskum, G. J. Neurosci. (2003) [Pubmed]
  30. Endogenous cleavage of phospholipase C-beta 3 by agonist-induced activation of calpain in human platelets. Banno, Y., Nakashima, S., Hachiya, T., Nozawa, Y. J. Biol. Chem. (1995) [Pubmed]
  31. E1k, another quantitative variant at cholinesterase locus 1. Rubinstein, H.M., Dietz, A.A., Lubrano, T. J. Med. Genet. (1978) [Pubmed]
  32. Nonclassical hydrophobic effect in membrane binding equilibria. Seelig, J., Ganz, P. Biochemistry (1991) [Pubmed]
  33. Binding sites for alpha-bungarotoxin and the noncompetitive inhibitor phencyclidine on a synthetic peptide comprising residues 172-227 of the alpha-subunit of the nicotinic acetylcholine receptor. Donnelly-Roberts, D.L., Lentz, T.L. Biochemistry (1991) [Pubmed]
  34. Adenosinetriphosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. Matt, H., Bilinski, M., Plattner, H. J. Cell. Sci. (1978) [Pubmed]
  35. Locations of local anesthetic dibucaine in model membranes and the interaction between dibucaine and a Na+ channel inactivation gate peptide as studied by 2H- and 1H-NMR spectroscopies. Kuroda, Y., Ogawa, M., Nasu, H., Terashima, M., Kasahara, M., Kiyama, Y., Wakita, M., Fujiwara, Y., Fujii, N., Nakagawa, T. Biophys. J. (1996) [Pubmed]
  36. Membrane damage and the Ca(2+)-paradox in the perfused rat kidney. Duncan, C.J., Morton, J.W. Kidney Int. (1996) [Pubmed]
WikiGenes - Universities