The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CFDP1  -  craniofacial development protein 1

Homo sapiens

Synonyms: BCNT, BUCENTAUR, Bucentaur, CENP-29, CP27, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CFDP1

 

Psychiatry related information on CFDP1

 

High impact information on CFDP1

  • Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions [10].
  • In an in vitro model of retrotranslocation, the AAA ATPase p97, an enzyme critical for ERAD, was the only cytosolic cofactor required for protein export from isolated phagosomes [11].
  • Nuclear import and export of unphosphorylated STAT1 are demonstrated to be sensitive towards wheat germ agglutinin and to occur independently of the import receptor p97 [12].
  • Genetics of craniofacial development and malformation [13].
  • Expression of transgene mRNA at levels equivalent or higher than the endogenous mRNA in the offspring of two founder animals resulted in a severe chondrodysplastic phenotype with short limbs, hypoplastic thorax, abnormal craniofacial development, and other skeletal deformities [14].
 

Biological context of CFDP1

 

Anatomical context of CFDP1

  • Immunohistochemical staining of developing mouse tissues detected epitopes specific for CP27 in the mesenchyme surrounding the primary brain vesicles, in basement membranes, in the periosteum, in salivary glands, and in the stellate reticulum of teeth [16].
  • Subcellular fractionation and immunohistochemical analyses using a normal bovine epithelial cell line and bovine brain revealed that a significant amount of bovine BCNT is localized in the nuclei, while the major portion is present in the cytosol [18].
  • Thus, p97 is activated by the neurogenic factor fibroblast growth factor (FGF) but not the mitogenic factor epidermal growth factor (EGF) in neuronal cells [19].
  • Finally, p97 is expressed in a number of cell types including primary neural and NIH 3T3 cells [19].
  • The monoclonal antibody L235 (which recognizes a conformational epitope on p97) inhibited the migration of human microvascular endothelial cells (HMECs-1) and of human melanoma SK-MEL-28 cells, indicating that endogenous membrane-bound p97 could be associated with this process [20].
 

Associations of CFDP1 with chemical compounds

  • Retinoic acid and craniofacial development: molecules and morphogenesis [21].
  • Both of these Rep78 mutants were found to be defective for inhibition of p97 promoter activity in HeLa and T-47D nuclear extracts in vitro, in a transient chloramphenicol acetyltransferase assay, as well as defective for full inhibition of HPV-16-directed focus formation [22].
  • To address the possibility that p97 may represent a tyrosine kinase involved in multiple signal transduction pathways, we tested the capacity of this protein to bind a tyrosine kinase substrate or ATP [23].
  • The domains within each protomer of the hexameric p97/VCP deviate from strict 6-fold symmetry, with the more flexible ADP state exhibiting greater asymmetry compared to the relatively rigid ADP x AlF3 state, suggesting a mechanism of action in which hydrolysis and conformational changes move about the hexamer in a processive fashion [24].
  • The underlying philosophy combines flexible docking (software Yeti) for the identification of the binding mode(s) and 6D-QSAR (software Quasar) for their quantification [25].
 

Enzymatic interactions of CFDP1

  • Furthermore, it was shown that bovine BCNT is a phosphoprotein and that both bovine and human BCNTs are phosphorylated by casein kinase II in vitro [18].
 

Regulatory relationships of CFDP1

 

Other interactions of CFDP1

 

Analytical, diagnostic and therapeutic context of CFDP1

References

  1. Gene prioritization through genomic data fusion. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.C., De Moor, B., Marynen, P., Hassan, B., Carmeliet, P., Moreau, Y. Nat. Biotechnol. (2006) [Pubmed]
  2. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon. Edwards, S.J., Gladwin, A.J., Dixon, M.J. Am. J. Hum. Genet. (1997) [Pubmed]
  3. Induction of immunity to a human tumor marker by in vivo administration of anti-idiotypic antibodies in mice. Nepom, G.T., Nelson, K.A., Holbeck, S.L., Hellström, I., Hellström, K.E. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  4. Definition of the blepharophimosis, ptosis, epicanthus inversus syndrome critical region at chromosome 3q23 based on the analysis of chromosomal anomalies. Lawson, C.T., Toomes, C., Fryer, A., Carette, M.J., Taylor, G.M., Fukushima, Y., Dixon, M.J. Hum. Mol. Genet. (1995) [Pubmed]
  5. p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells. Takemoto, S., Trovato, R., Cereseto, A., Nicot, C., Kislyakova, T., Casareto, L., Waldmann, T., Torelli, G., Franchini, G. Blood (2000) [Pubmed]
  6. Temporal perturbations in sonic hedgehog signaling elicit the spectrum of holoprosencephaly phenotypes. Cordero, D., Marcucio, R., Hu, D., Gaffield, W., Tapadia, M., Helms, J.A. J. Clin. Invest. (2004) [Pubmed]
  7. Specification of neural crest cell formation and migration in mouse embryos. Trainor, P.A. Semin. Cell Dev. Biol. (2005) [Pubmed]
  8. Serum melanotransferrin, p97 as a biochemical marker of Alzheimer's disease. Kim, D.K., Seo, M.Y., Lim, S.W., Kim, S., Kim, J.W., Carroll, B.J., Kwon, D.Y., Kwon, T., Kang, S.S. Neuropsychopharmacology (2001) [Pubmed]
  9. The anthropometric assessment of dysmorphic features in schizophrenia as an index of its developmental origins. Lane, A., Kinsella, A., Murphy, P., Byrne, M., Keenan, J., Colgan, K., Cassidy, B., Sheppard, N., Horgan, R., Waddington, J.L., Larkin, C., O'Callaghan, E. Psychological medicine. (1997) [Pubmed]
  10. Hox genes, neural crest cells and branchial arch patterning. Trainor, P.A., Krumlauf, R. Curr. Opin. Cell Biol. (2001) [Pubmed]
  11. A Role for the Endoplasmic Reticulum Protein Retrotranslocation Machinery during Crosspresentation by Dendritic Cells. Ackerman, A.L., Giodini, A., Cresswell, P. Immunity (2006) [Pubmed]
  12. Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways. Meyer, T., Begitt, A., Lödige, I., van Rossum, M., Vinkemeier, U. EMBO J. (2002) [Pubmed]
  13. Genetics of craniofacial development and malformation. Wilkie, A.O., Morriss-Kay, G.M. Nat. Rev. Genet. (2001) [Pubmed]
  14. Chondrodysplasia in transgenic mice harboring a 15-amino acid deletion in the triple helical domain of pro alpha 1(II) collagen chain. Metsäranta, M., Garofalo, S., Decker, G., Rintala, M., de Crombrugghe, B., Vuorio, E. J. Cell Biol. (1992) [Pubmed]
  15. An Alu-linked repetitive sequence corresponding to 280 amino acids is expressed in a novel bovine protein, but not in its human homologue. Nobukuni, T., Kobayashi, M., Omori, A., Ichinose, S., Iwanaga, T., Takahashi, I., Hashimoto, K., Hattori, S., Kaibuchi, K., Miyata, Y., Masui, T., Iwashita, S. J. Biol. Chem. (1997) [Pubmed]
  16. Cloning, gene expression, and characterization of CP27, a novel gene in mouse embryogenesis. Diekwisch, T.G., Marches, F., Williams, A., Luan, X. Gene (1999) [Pubmed]
  17. Existence of a bovine LINE repetitive insert that appears in the cDNA of bovine protein BCNT in ruminant, but not in human, genomes. Takahashi, I., Nobukuni, T., Ohmori, H., Kobayashi, M., Tanaka, S., Ohshima, K., Okada, N., Masui, T., Hashimoto, K., Iwashita, S. Gene (1998) [Pubmed]
  18. Partial nuclear localization of a bovine phosphoprotein, BCNT, that includes a region derived from a LINE repetitive sequence in Ruminantia. Iwashita, S., Nobukuni, T., Tanaka, S., Kobayashi, M., Iwanaga, T., Tamate, H.B., Masui, T., Takahashi, I., Hashimoto, K. Biochim. Biophys. Acta (1999) [Pubmed]
  19. A novel mitogen-activated protein kinase is responsive to Raf and mediates growth factor specificity. Janulis, M., Trakul, N., Greene, G., Schaefer, E.M., Lee, J.D., Rosner, M.R. Mol. Cell. Biol. (2001) [Pubmed]
  20. Regulation of plasminogen activation: a role for melanotransferrin (p97) in cell migration. Demeule, M., Bertrand, Y., Michaud-Levesque, J., Jodoin, J., Rolland, Y., Gabathuler, R., Béliveau, R. Blood (2003) [Pubmed]
  21. Retinoic acid and craniofacial development: molecules and morphogenesis. Morriss-Kay, G. Bioessays (1993) [Pubmed]
  22. Binding of the human papillomavirus type 16 p97 promoter by the adeno-associated virus Rep78 major regulatory protein correlates with inhibition. Zhan, D., Santin, A.D., Liu, Y., Parham, G.P., Li, C., Meyers, C., Hermonat, P.L. J. Biol. Chem. (1999) [Pubmed]
  23. Characterization of a 97-kDa phosphotyrosylprotein regulated by multiple cytokines. Linnekin, D., Evans, G., Michiel, D., Farrar, W.L. J. Biol. Chem. (1992) [Pubmed]
  24. Nucleotide dependent motion and mechanism of action of p97/VCP. DeLaBarre, B., Brunger, A.T. J. Mol. Biol. (2005) [Pubmed]
  25. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. Vedani, A., Dobler, M., Lill, M.A. J. Med. Chem. (2005) [Pubmed]
  26. Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2): structure, gene mapping, polymorphisms, and candidate evaluation for human orofacial clefts. Barrow, L.L., Wines, M.E., Romitti, P.A., Holdener, B.C., Murray, J.C. Teratology (2002) [Pubmed]
  27. DNA binding and transcriptional properties of wild-type and mutant forms of the homeodomain protein Msx2. Semenza, G.L., Wang, G.L., Kundu, R. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  28. A YAC contig encompassing the Treacher Collins syndrome critical region at 5q31.3-32. Dixon, J., Gladwin, A.J., Loftus, S.K., Riley, J.H., Perveen, R., Wasmuth, J.J., Anand, R., Dixon, M.J. Am. J. Hum. Genet. (1994) [Pubmed]
  29. Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. Chiba, S., Takeshita, K., Imai, Y., Kumano, K., Kurokawa, M., Masuda, S., Shimizu, K., Nakamura, S., Ruddle, F.H., Hirai, H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  30. Novel mutations in the IRF6 gene for Van der Woude syndrome. Wang, X., Liu, J., Zhang, H., Xiao, M., Li, J., Yang, C., Lin, X., Wu, Z., Hu, L., Kong, X. Hum. Genet. (2003) [Pubmed]
  31. The Smad transcriptional corepressor TGIF recruits mSin3. Wotton, D., Knoepfler, P.S., Laherty, C.D., Eisenman, R.N., Massagué, J. Cell Growth Differ. (2001) [Pubmed]
  32. Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Stanier, P., Moore, G.E. Hum. Mol. Genet. (2004) [Pubmed]
  33. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Liu, W., Selever, J., Lu, M.F., Martin, J.F. Development (2003) [Pubmed]
  34. Head development. Craniofacial genetics makes headway. Richman, J.M. Curr. Biol. (1995) [Pubmed]
 
WikiGenes - Universities