The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Mat1a  -  methionine adenosyltransferase I, alpha

Rattus norvegicus

Synonyms: AdoMet, AdoMet synthase 1, Ams1, MAT 1, MAT-I/III, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mat1a

  • Hypoxia dramatically reduced methionine adenosyltransferase gene transcription, and messenger stability was also decreased, although to a lesser extent [1].
  • The effect of AdoMet on okadaic acid (OA)-induced apoptosis was evaluated using primary cultures of rat hepatocytes and human hepatoma cell lines [2].
  • AdoMet administration attenuates experimental liver damage, improves survival of alcoholic patients with cirrhosis, and prevents experimental hepatocarcinogenesis [2].
  • The results show that intravenously administered AdoMet is efficiently metabolized in vivo up to the highest tested dose (250 mumol X kg-1 body weight), about two-thirds of the metabolized compound being utilized via transmethylation and cleavage to methylthioadenosine and one-third via decarboxylation [3].
  • Renal ischemia for 30min resulted in an increase of AdoHcy levels from 0.7+/-0.05 to 9.1+/-0.6nmol/g wet weight and in a dramatic decrease of the AdoMet/AdoHcy ratio and energy charge from 65.1+/-5.6 to 2.8+/-0.2 and from 0.87+/-0.01 to 0.25+/-0.01, respectively [4].

High impact information on Mat1a


Chemical compound and disease context of Mat1a


Biological context of Mat1a


Anatomical context of Mat1a


Associations of Mat1a with chemical compounds


Physical interactions of Mat1a


Enzymatic interactions of Mat1a


Regulatory relationships of Mat1a


Other interactions of Mat1a


Analytical, diagnostic and therapeutic context of Mat1a


  1. Regulation by hypoxia of methionine adenosyltransferase activity and gene expression in rat hepatocytes. Avila, M.A., Carretero, M.V., Rodriguez, E.N., Mato, J.M. Gastroenterology (1998) [Pubmed]
  2. S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Ansorena, E., García-Trevijano, E.R., Martínez-Chantar, M.L., Huang, Z.Z., Chen, L., Mato, J.M., Iraburu, M., Lu, S.C., Avila, M.A. Hepatology (2002) [Pubmed]
  3. Transmethylation, transsulfuration, and aminopropylation reactions of S-adenosyl-L-methionine in vivo. Giulidori, P., Galli-Kienle, M., Catto, E., Stramentinoli, G. J. Biol. Chem. (1984) [Pubmed]
  4. Tissue levels of S-adenosylhomocysteine in the rat kidney: effects of ischemia and homocysteine. Kloor, D., Delabar, U., Mühlbauer, B., Luippold, G., Osswald, H. Biochem. Pharmacol. (2002) [Pubmed]
  5. Crystal structure of catechol O-methyltransferase. Vidgren, J., Svensson, L.A., Liljas, A. Nature (1994) [Pubmed]
  6. New approaches to cancer chemoprevention with difluoromethylornithine and selenite. Ip, C., Thompson, H.J. J. Natl. Cancer Inst. (1989) [Pubmed]
  7. NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. García-Trevijano, E.R., Martínez-Chantar, M.L., Latasa, M.U., Mato, J.M., Avila, M.A. Gastroenterology (2002) [Pubmed]
  8. Toward the synthesis of isozyme-specific enzyme inhibitors. Potent inhibitors of rat methionine adenosyltransferases. Effect of one-atom elongation of the ribose-P alpha bridge in two covalent adducts of L-methionine and beta,gamma-imido-ATP. Kappler, F., Vrudhula, V.M., Hampton, A. J. Med. Chem. (1988) [Pubmed]
  9. S-Adenosylmethionine, cytokines, and alcoholic liver disease. McClain, C.J., Hill, D.B., Song, Z., Chawla, R., Watson, W.H., Chen, T., Barve, S. Alcohol (2002) [Pubmed]
  10. Effects of carboxylmethylation and polyamine synthesis inhibitors on methylation of Trypanosoma brucei cellular proteins and lipids. Goldberg, B., Rattendi, D., Yarlett, N., Lloyd, D., Bacchi, C.J. J. Eukaryot. Microbiol. (1997) [Pubmed]
  11. Striatal dopamine depletion, tremors, and hypokinesia following the intracranial injection of S-adenosylmethionine: a possible role of hypermethylation in parkinsonism. Charlton, C.G., Crowell, B. Mol. Chem. Neuropathol. (1995) [Pubmed]
  12. Liver cell proliferation requires methionine adenosyltransferase 2A mRNA up-regulation. Pañeda, C., Gorospe, I., Herrera, B., Nakamura, T., Fabregat, I., Varela-Nieto, I. Hepatology (2002) [Pubmed]
  13. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine. Hoffman, D.R., Marion, D.W., Cornatzer, W.E., Duerre, J.A. J. Biol. Chem. (1980) [Pubmed]
  14. Role of an intrasubunit disulfide in the association state of the cytosolic homo-oligomer methionine adenosyltransferase. Sanchez-Perez, G.F., Gasset, M., Calvete, J.J., Pajares, M.A. J. Biol. Chem. (2003) [Pubmed]
  15. Methionine adenosyltransferase:adrenergic-cAMP mechanism regulates a daily rhythm in pineal expression. Kim, J.S., Coon, S.L., Blackshaw, S., Cepko, C.L., Møller, M., Mukda, S., Zhao, W.Q., Charlton, C.G., Klein, D.C. J. Biol. Chem. (2005) [Pubmed]
  16. A novel cyclic adenosine 3',5'-monophosphate-responsive element involved in the transcriptional regulation of the lutropin receptor gene in granulosa cells. Chen, S., Liu, X., Segaloff, D.L. Mol. Endocrinol. (2000) [Pubmed]
  17. Differences between tissues in response of S-adenosylmethionine decarboxylase to administration of polyamines. Pösö, H., Pegg, A.E. Biochem. J. (1981) [Pubmed]
  18. Characterization of rat liver-specific methionine adenosyltransferase gene promoter. Role of distal upstream cis-acting elements in the regulation of the transcriptional activity. Alvarez, L., Sánchez-Góngora, E., Mingorance, J., Pajares, M.A., Mato, J.M. J. Biol. Chem. (1997) [Pubmed]
  19. Assignment of a single disulfide bridge in rat liver methionine adenosyltransferase. Martínez-Chantar, M.L., Pajares, M.A. Eur. J. Biochem. (2000) [Pubmed]
  20. Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. Zhang, X., Zhou, L., Cheng, X. EMBO J. (2000) [Pubmed]
  21. Crystal structure of glycine N-methyltransferase from rat liver. Fu, Z., Hu, Y., Konishi, K., Takata, Y., Ogawa, H., Gomi, T., Fujioka, M., Takusagawa, F. Biochemistry (1996) [Pubmed]
  22. Recombinant rat guanidinoacetate methyltransferase: structure and function of the NH2-terminal region as deduced by limited proteolysis. Fujioka, M., Takata, Y., Gomi, T. Arch. Biochem. Biophys. (1991) [Pubmed]
  23. Identification of a tyrosine residue in rat guanidinoacetate methyltransferase that is photolabeled with S-adenosyl-L-methionine. Takata, Y., Fujioka, M. Biochemistry (1992) [Pubmed]
  24. Interleukin-2 induces gamma-S-adenosyl-L-methionine synthetase gene expression during T-lymphocyte activation. Tobeña, R., Horikawa, S., Calvo, V., Alemany, S. Biochem. J. (1996) [Pubmed]
  25. Crystal structure of apo-glycine N-methyltransferase (GNMT). Pattanayek, R., Newcomer, M.E., Wagner, C. Protein Sci. (1998) [Pubmed]
  26. Changes in ornithine decarboxylase activity and polyamine levels in response to eight different forms of selenium. Thompson, H.J., Ip, C., Ganther, H.E. J. Inorg. Biochem. (1991) [Pubmed]
  27. Effect of acute ethanol administration on S-amino acid metabolism: increased utilization of cysteine for synthesis of taurine rather than glutathione. Jung, Y.S., Kwak, H.E., Choi, K.H., Kim, Y.C. Adv. Exp. Med. Biol. (2003) [Pubmed]
  28. Effect of dietary glycine on methionine metabolism in rats fed a high-methionine diet. Sugiyama, K., Kushima, Y., Muramatsu, K. J. Nutr. Sci. Vitaminol. (1987) [Pubmed]
  29. Rat guanidinoacetate methyltransferase. Effect of site-directed alteration of an aspartic acid residue that is conserved across most mammalian S-adenosylmethionine-dependent methyltransferases. Takata, Y., Konishi, K., Gomi, T., Fujioka, M. J. Biol. Chem. (1994) [Pubmed]
  30. Effect of nicotine on lung S-adenosylmethionine and development of Pneumocystis pneumonia. Shivji, M., Burger, S., Moncada, C.A., Clarkson, A.B., Merali, S. J. Biol. Chem. (2005) [Pubmed]
  31. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes. Møller, M.T., Samari, H.R., Fengsrud, M., Strømhaug, P.E., øStvold, A.C., Seglen, P.O. Biochem. J. (2003) [Pubmed]
  32. Differential metabolic response of rat liver, kidney and spleen to ethionine exposure. S-adenosylamino acids, homocysteine and reduced glutathione in tissues. Svardal, A.M., Ueland, P.M., Aarsaether, N., Aarsland, A., Berge, R.K. Carcinogenesis (1988) [Pubmed]
  33. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Gasset, M., Alfonso, C., Neira, J.L., Rivas, G., Pajares, M.A. Biochem. J. (2002) [Pubmed]
WikiGenes - Universities