The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

AR  -  androgen receptor

Bos taurus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of AR

  • This study is the first to investigate the association between the AR CAG repeat polymorphism and the relative risk of prostate cancer in the Brazilian population [1].
 

High impact information on AR

 

Chemical compound and disease context of AR

  • These results provide new evidence on antagonistic/agonistic responses of prostate cancer cells to antiandrogen drugs that are widely used in therapy and show that flutamide can elicit responses in prostate cancer cells that do not express AR [7].
 

Biological context of AR

 

Anatomical context of AR

  • The gastrointestinal tract as target of steroid hormone action: quantification of steroid receptor mRNA expression (AR, ERalpha, ERbeta and PR) in 10 bovine gastrointestinal tract compartments by kinetic RT-PCR [13].
  • In immunocytochemistry experiments with the human AR, concentrations as low as 1 pM significantly induced androgen-dependent translocation of the AR into the cell nucleus [14].
  • In types 3-5 follicles, AR mRNA expression was present in granulosa cells of 100% of follicles examined (n = 4, 4, and 4, respectively) and was greater than type 1 follicles (P = 0.002) [15].
  • The presence of free androgen (AR) and estrogen receptors (ER) was demonstrated in bovine skeletal muscle [16].
  • We have found that AR antagonists and inhibitors of fetal testis hormone production generally induce cumulative, apparently dose-additive adverse effects when administered in mixtures [17].
 

Associations of AR with chemical compounds

  • Dissociation studies with methyltrienolone and 5 alpha-dihydrotestosterone revealed that the AR can exist in two affinity states which differ 13- to 30-fold in their affinity for the steroid [9].
  • AR and PR seem to be not estrogen dependent [13].
  • Cells from AR tumors cultured in the presence of DHT formed confluent pavements, whereas cells maintained in the absence of DHT and cells from AI tumors formed clusters or cords of cells [18].
  • This form of AR has an intrinsic binding affinity for DNA and was eluted from DNA-cellulose with 9 mM MgCl2 [19].
  • The major site of photoaffinity labeling of the gamma-aminobutyric acid type A receptor by [3H]flunitrazepam is histidine 102 of the alpha subunit [20].
 

Other interactions of AR

 

Analytical, diagnostic and therapeutic context of AR

References

  1. Androgen receptor CAG repeat polymorphism in prostate cancer from a Brazilian population. Santos, M.L., Sarkis, A.S., Nishimoto, I.N., Nagai, M.A. Cancer Detect. Prev. (2003) [Pubmed]
  2. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Ffrench-Constant, R.H., Mortlock, D.P., Shaffer, C.D., MacIntyre, R.J., Roush, R.T. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  3. Endogenous phosphorylation of distinct gamma-aminobutyric acid type A receptor polypeptides by Ser/Thr and Tyr kinase activities associated with the purified receptor. Bureau, M.H., Laschet, J.J. J. Biol. Chem. (1995) [Pubmed]
  4. Modulation by NaCl of atrial natriuretic peptide receptor levels and cyclic GMP responsiveness to atrial natriuretic peptide of cultured vascular endothelial cells. Katafuchi, T., Mizuno, T., Hagiwara, H., Itakura, M., Ito, T., Hirose, S. J. Biol. Chem. (1992) [Pubmed]
  5. IGF-I mRNA levels in bovine satellite cell cultures: effects of fusion and anabolic steroid treatment. Kamanga-Sollo, E., Pampusch, M.S., Xi, G., White, M.E., Hathaway, M.R., Dayton, W.R. J. Cell. Physiol. (2004) [Pubmed]
  6. Androgen formation and metabolism in the pulmonary epithelial cell line A549: expression of 17beta-hydroxysteroid dehydrogenase type 5 and 3alpha-hydroxysteroid dehydrogenase type 3. Provost, P.R., Blomquist, C.H., Godin, C., Huang, X.F., Flamand, N., Luu-The, V., Nadeau, D., Tremblay, Y. Endocrinology (2000) [Pubmed]
  7. Effects of the antiandrogen flutamide on the expression of protein kinase C isoenzymes in LNCaP and PC3 human prostate cancer cells. Montalvo, L., Carmena, M.J., Bolaños, O., Rodríguez-Henche, N., Sánchez-Chapado, M., Prieto, J.C. Biosci. Rep. (2004) [Pubmed]
  8. Testosterone is a potential augmentor of antioxidant-induced apoptosis in human prostate cancer cells. Gunawardena, K., Murray, D.K., Meikle, A.W. Cancer Detect. Prev. (2002) [Pubmed]
  9. Characterization of the calf uterine androgen receptor and its activation to the deoxyribonucleic acid-binding state. de Boer, W., Lindh, M., Bolt, J., Brinkmann, A., Mulder, E. Endocrinology (1986) [Pubmed]
  10. Administration of prostaglandin f(2 alpha) during the early bovine luteal phase does not alter the expression of ET-1 and of its type A receptor: a possible cause for corpus luteum refractoriness. Levy, N., Kobayashi, S., Roth, Z., Wolfenson, D., Miyamoto, A., Meidan, R. Biol. Reprod. (2000) [Pubmed]
  11. Effects of muscle type, castration, age, and compensatory growth rate on androgen receptor mRNA expression in bovine skeletal muscle. Brandstetter, A.M., Pfaffl, M.W., Hocquette, J.F., Gerrard, D.E., Picard, B., Geay, Y., Sauerwein, H. J. Anim. Sci. (2000) [Pubmed]
  12. Molecular characterisation of a NADH ubiquinone oxidoreductase subunit 5 from Schistosoma mansoni and inhibition of mitochondrial respiratory chain function by testosterone. Fantappié, M.R., Galina, A., Luís de Mendonça, R., Furtado, D.R., Secor, W.E., Colley, D.G., Corrêa-Oliveira, R., Freeman, G., Tempone, A.J., Lannes de Camargo, L., Rumjanek, D.F. Mol. Cell. Biochem. (1999) [Pubmed]
  13. The gastrointestinal tract as target of steroid hormone action: quantification of steroid receptor mRNA expression (AR, ERalpha, ERbeta and PR) in 10 bovine gastrointestinal tract compartments by kinetic RT-PCR. Pfaffl, M.W., Lange, I.G., Meyer, H.H. J. Steroid Biochem. Mol. Biol. (2003) [Pubmed]
  14. In vitro and in vivo effects of 17beta-trenbolone: a feedlot effluent contaminant. Wilson, V.S., Lambright, C., Ostby, J., Gray, L.E. Toxicol. Sci. (2002) [Pubmed]
  15. Androgen receptor mRNA expression in the bovine ovary. Hampton, J.H., Manikkam, M., Lubahn, D.B., Smith, M.F., Garverick, H.A. Domest. Anim. Endocrinol. (2004) [Pubmed]
  16. Androgen and estrogen receptors in bovine skeletal muscle: relation to steroid-induced allometric muscle growth. Sauerwein, H., Meyer, H.H. J. Anim. Sci. (1989) [Pubmed]
  17. Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals. Gray, L.E., Wilson, V.S., Stoker, T., Lambright, C., Furr, J., Noriega, N., Howdeshell, K., Ankley, G.T., Guillette, L. Int. J. Androl. (2006) [Pubmed]
  18. Phenotypic stability of mouse mammary tumor cells cultured on collagen gels. Emerman, J.T., Worth, A.J. In Vitro Cell. Dev. Biol. (1985) [Pubmed]
  19. Analysis of steroid- and DNA-binding domains of the calf uterine androgen receptor by limited proteolysis. de Boer, W., Bolt, J., Kuiper, G.G., Brinkmann, A.O., Mulder, E. J. Steroid Biochem. (1987) [Pubmed]
  20. The major site of photoaffinity labeling of the gamma-aminobutyric acid type A receptor by [3H]flunitrazepam is histidine 102 of the alpha subunit. Duncalfe, L.L., Carpenter, M.R., Smillie, L.B., Martin, I.L., Dunn, S.M. J. Biol. Chem. (1996) [Pubmed]
  21. Effects of synthetic progestagens on the mRNA expression of androgen receptor, progesterone receptor, oestrogen receptor alpha and beta, insulin-like growth factor-1 (IGF-1) and IGF-1 receptor in heifer tissues. Pfaffl, M.W., Daxenberger, A., Hageleit, M., Meyer, H.H. Journal of veterinary medicine. A, Physiology, pathology, clinical medicine. (2002) [Pubmed]
  22. Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells. Luo, W., Wiltbank, M.C. Biol. Reprod. (2006) [Pubmed]
  23. Bovine uterine, cervical and ovarian androgen receptor concentrations. Correlation with estrogen and progesterone receptor concentrations. Vesanen, M., Isomaa, V., Alanko, M., Vihko, R. Acta Vet. Scand. (1992) [Pubmed]
  24. Quantification of androgen receptor mRNA in tissues by competitive co-amplification of a template in reverse transcription-polymerase chain reaction. Malucelli, A., Sauerwein, H., Pfaffl, M.W., Meyer, H.H. J. Steroid Biochem. Mol. Biol. (1996) [Pubmed]
  25. Purification and characterization of androgen receptor from steer seminal vesicle. Chang, C.H., Rowley, D.R., Lobl, T.J., Tindall, D.J. Biochemistry (1982) [Pubmed]
  26. Application of an androgen receptor assay for the characterisation of the androgenic or antiandrogenic activity of various phenylurea herbicides and their derivatives. Bauer, E.R., Meyer, H.H., Stahlschmidt-Allner, P., Sauerwein, H. The Analyst. (1998) [Pubmed]
 
WikiGenes - Universities