The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Bovinocidin     3-nitropropanoic acid

Synonyms: Lopac-N-5636, CCRIS 454, CHEMBL451226, NCI-C03076, AG-K-49698, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bovinocidin

 

Psychiatry related information on Bovinocidin

 

High impact information on Bovinocidin

 

Chemical compound and disease context of Bovinocidin

 

Biological context of Bovinocidin

 

Anatomical context of Bovinocidin

 

Associations of Bovinocidin with other chemical compounds

 

Gene context of Bovinocidin

 

Analytical, diagnostic and therapeutic context of Bovinocidin

References

  1. Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor-dependent neuronal cell death and caspase-3-dependent apoptosis. Allen, J.W., Knoblach, S.M., Faden, A.I. FASEB J. (1999) [Pubmed]
  2. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. Shih, A.Y., Imbeault, S., Barakauskas, V., Erb, H., Jiang, L., Li, P., Murphy, T.H. J. Biol. Chem. (2005) [Pubmed]
  3. Oxidative stress in transgenic mice with oligodendroglial alpha-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Stefanova, N., Reindl, M., Neumann, M., Haass, C., Poewe, W., Kahle, P.J., Wenning, G.K. Am. J. Pathol. (2005) [Pubmed]
  4. Acetylsalicylic acid increases tolerance against hypoxic and chemical hypoxia. Riepe, M.W., Kasischke, K., Raupach, A. Stroke (1997) [Pubmed]
  5. Tolerance-Inducing dose of 3-nitropropionic acid modulates bcl-2 and bax balance in the rat brain: a potential mechanism of chemical preconditioning. Brambrink, A.M., Schneider, A., Noga, H., Astheimer, A., Götz, B., Körner, I., Heimann, A., Welschof, M., Kempski, O. J. Cereb. Blood Flow Metab. (2000) [Pubmed]
  6. Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington's disease. Lee, W.T., Chang, C. Prog. Neurobiol. (2004) [Pubmed]
  7. Glial cell line-derived neurotrophic factor attenuates the locomotor hypofunction and striatonigral neurochemical deficits induced by chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid. Araujo, D.M., Hilt, D.C. Neuroscience (1998) [Pubmed]
  8. Behavioural correlates of striatal glial fibrillary acidic protein in the 3-nitropropionic acid rat model: disturbed walking pattern and spatial orientation. Teunissen, C.E., Steinbusch, H.W., Angevaren, M., Appels, M., de Bruijn, C., Prickaerts, J., de Vente, J. Neuroscience (2001) [Pubmed]
  9. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease. Keene, C.D., Rodrigues, C.M., Eich, T., Chhabra, M.S., Steer, C.J., Low, W.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  10. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice. Gines, S., Seong, I.S., Fossale, E., Ivanova, E., Trettel, F., Gusella, J.F., Wheeler, V.C., Persichetti, F., MacDonald, M.E. Hum. Mol. Genet. (2003) [Pubmed]
  11. Replicating Huntington's disease phenotype in experimental animals. Brouillet, E., Condé, F., Beal, M.F., Hantraye, P. Prog. Neurobiol. (1999) [Pubmed]
  12. Nitric oxide acutely inhibits neuronal energy production. The Committees on Neurobiology and Cell Physiology. Brorson, J.R., Schumacker, P.T., Zhang, H. J. Neurosci. (1999) [Pubmed]
  13. Ablation of the subthalamic nucleus supports the survival of nigral dopaminergic neurons after nigrostriatal lesions induced by the mitochondrial toxin 3-nitropropionic acid. Nakao, N., Nakai, E., Nakai, K., Itakura, T. Ann. Neurol. (1999) [Pubmed]
  14. Dopamine modulates the susceptibility of striatal neurons to 3-nitropropionic acid in the rat model of Huntington's disease. Reynolds, D.S., Carter, R.J., Morton, A.J. J. Neurosci. (1998) [Pubmed]
  15. Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Saulle, E., Gubellini, P., Picconi, B., Centonze, D., Tropepi, D., Pisani, A., Morari, M., Marti, M., Rossi, L., Papa, M., Bernardi, G., Calabresi, P. Mol. Cell. Neurosci. (2004) [Pubmed]
  16. 3-Nitropropionic acid toxicity in hippocampus: Protection through N-methyl-D-aspartate receptor antagonism. Karanian, D.A., Baude, A.S., Brown, Q.B., Parsons, C.G., Bahr, B.A. Hippocampus. (2006) [Pubmed]
  17. Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. Andres, R.H., Ducray, A.D., Huber, A.W., Pérez-Bouza, A., Krebs, S.H., Schlattner, U., Seiler, R.W., Wallimann, T., Widmer, H.R. J. Neurochem. (2005) [Pubmed]
  18. Defective herpes simplex virus vectors expressing the rat brain glucose transporter protect cultured neurons from necrotic insults. Ho, D.Y., Saydam, T.C., Fink, S.L., Lawrence, M.S., Sapolsky, R.M. J. Neurochem. (1995) [Pubmed]
  19. Striatal cells from mutant huntingtin knock-in mice are selectively vulnerable to mitochondrial complex II inhibitor-induced cell death through a non-apoptotic pathway. Ruan, Q., Lesort, M., MacDonald, M.E., Johnson, G.V. Hum. Mol. Genet. (2004) [Pubmed]
  20. Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. Pang, Z., Geddes, J.W. J. Neurosci. (1997) [Pubmed]
  21. Involvement of superoxide in excitotoxicity and DNA fragmentation in striatal vulnerability in mice after treatment with the mitochondrial toxin, 3-nitropropionic acid. Kim, G.W., Chan, P.H. J. Cereb. Blood Flow Metab. (2002) [Pubmed]
  22. FK506 prevents mitochondrial-dependent apoptotic cell death induced by 3-nitropropionic acid in rat primary cortical cultures. Almeida, S., Domingues, A., Rodrigues, L., Oliveira, C.R., Rego, A.C. Neurobiol. Dis. (2004) [Pubmed]
  23. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. Keller, J.N., Guo, Q., Holtsberg, F.W., Bruce-Keller, A.J., Mattson, M.P. J. Neurosci. (1998) [Pubmed]
  24. Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington's disease. Túnez, I., Montilla, P., Del Carmen Muñoz, M., Feijóo, M., Salcedo, M. J. Pineal Res. (2004) [Pubmed]
  25. Effect of exogenous and endogenous antioxidants on 3-nitropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington's disease. Fontaine, M.A., Geddes, J.W., Banks, A., Butterfield, D.A. J. Neurochem. (2000) [Pubmed]
  26. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease. Ryu, J.K., Kim, J., Cho, S.J., Hatori, K., Nagai, A., Choi, H.B., Lee, M.C., McLarnon, J.G., Kim, S.U. Neurobiol. Dis. (2004) [Pubmed]
  27. Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. Brouillet, E., Jenkins, B.G., Hyman, B.T., Ferrante, R.J., Kowall, N.W., Srivastava, R., Roy, D.S., Rosen, B.R., Beal, M.F. J. Neurochem. (1993) [Pubmed]
  28. Mice deficient in dihydrolipoamide dehydrogenase show increased vulnerability to MPTP, malonate and 3-nitropropionic acid neurotoxicity. Klivenyi, P., Starkov, A.A., Calingasan, N.Y., Gardian, G., Browne, S.E., Yang, L., Bubber, P., Gibson, G.E., Patel, M.S., Beal, M.F. J. Neurochem. (2004) [Pubmed]
  29. Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid beta-peptide, iron, and 3-nitropropionic acid. Guo, Z., Ersoz, A., Butterfield, D.A., Mattson, M.P. J. Neurochem. (2000) [Pubmed]
  30. 3-nitropropionic acid oxidase from horseshoe vetch (Hippocrepis comosa): a novel plant enzyme. Hipkin, C.R., Salem, M.A., Simpson, D., Wainwright, S.J. Biochem. J. (1999) [Pubmed]
  31. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. Cleren, C., Calingasan, N.Y., Chen, J., Beal, M.F. J. Neurochem. (2005) [Pubmed]
  32. Oral uridine pro-drug PN401 is neuroprotective in the R6/2 and N171-82Q mouse models of Huntington's disease. Saydoff, J.A., Garcia, R.A., Browne, S.E., Liu, L., Sheng, J., Brenneman, D., Hu, Z., Cardin, S., Gonzalez, A., von Borstel, R.W., Gregorio, J., Burr, H., Beal, M.F. Neurobiol. Dis. (2006) [Pubmed]
  33. A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Zhang, C., Gehlbach, P., Gongora, C., Cano, M., Fariss, R., Hose, S., Nath, A., Green, W.R., Goldberg, M.F., Zigler, J.S., Sinha, D. Dev. Dyn. (2005) [Pubmed]
  34. The effect of aging on p38 signaling pathway activity in the mouse liver and in response to ROS generated by 3-nitropropionic acid. Hsieh, C.C., Papaconstantinou, J. Mech. Ageing Dev. (2002) [Pubmed]
  35. Malonate and 3-nitropropionic acid neurotoxicity are reduced in transgenic mice expressing a caspase-1 dominant-negative mutant. Andreassen, O.A., Ferrante, R.J., Hughes, D.B., Klivenyi, P., Dedeoglu, A., Ona, V.O., Friedlander, R.M., Beal, M.F. J. Neurochem. (2000) [Pubmed]
  36. Inducible neuronal expression of transgenic TGF-beta1 in vivo: dissection of short-term and long-term effects. Ueberham, U., Ueberham, E., Brückner, M.K., Seeger, G., Gärtner, U., Gruschka, H., Gebhardt, R., Arendt, T. Eur. J. Neurosci. (2005) [Pubmed]
  37. 3-Nitropropionic acid-induced neurotoxicity--assessed by ultra high resolution positron emission tomography with comparison to magnetic resonance spectroscopy. Brownell, A.L., Chen, Y.I., Yu, M., Wang, X., Dedeoglu, A., Cicchetti, F., Jenkins, B.G., Beal, M.F. J. Neurochem. (2004) [Pubmed]
  38. Astrocytes are more vulnerable than neurons to cellular Ca2+ overload induced by a mitochondrial toxin, 3-nitropropionic acid. Fukuda, A., Deshpande, S.B., Shimano, Y., Nishino, H. Neuroscience (1998) [Pubmed]
  39. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Ouary, S., Bizat, N., Altairac, S., Ménétrat, H., Mittoux, V., Condé, F., Hantraye, P., Brouillet, E. Neuroscience (2000) [Pubmed]
  40. 17 beta-Estradiol may affect vulnerability of striatum in a 3-nitropropionic acid-induced experimental model of Huntington's disease in ovariectomized rats. Túnez, I., Collado, J.A., Medina, F.J., Peña, J., Del C Muñoz, M., Jimena, I., Franco, F., Rueda, I., Feijóo, M., Muntané, J., Montilla, P. Neurochem. Int. (2006) [Pubmed]
  41. 3-Nitropropionic acid increases the intracellular Ca2+ in cultured astrocytes by reverse operation of the Na+-Ca2+ exchanger. Deshpande, S.B., Fukuda, A., Nishino, H. Exp. Neurol. (1997) [Pubmed]
 
WikiGenes - Universities