The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Culex

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Culex

 

High impact information on Culex

  • The discovery of an intron at a predicted position in the triose-phosphate isomerase (EC 5.3.1.1) gene of Culex mosquitoes has been hailed as an evidential pillar of the theory [6].
  • Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex [7].
  • Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus [8].
  • Further evidence from collections of Culex nigripalpus (the major mosquito vector of SLEV in Florida) suggests that during extended spring droughts vector mosquitoes and nestling, juvenile, and adult wild birds congregate in selected refuges, facilitating epizootic amplification of SLEV [9].
  • Previous studies of amplified esterase genes in a highly dispersive Culex mosquito have suggested that insecticide resistance-associated mutations (specifically a single-gene duplication event) can occur a single time and then spread throughout global populations [10].
 

Chemical compound and disease context of Culex

  • Residual toxicity of deltamethrin and permethrin on various surfaces for mosquito species culex pipiens molestul Forskal [11].
  • Dry-ice (CO2) baited EVS (Encephalitis Virus Surveillance) light traps collected significantly more Culex annulirostris than unbaited EVS or CDC light traps, chicken-, guinea pig- and rabbit-baited EVS traps, or cubic foot resting boxes [12].
  • When augmented with dry ice, the Arbovirus Field Station (AFS) trap (consisting of a 3-in. fan mounted into a white polyvinyl chloride pipe and operated without a light source or rain shield) collected as many or more Culex females than similar traps purchased from John W [13].
  • Vector competence of Culex tarsalis from Orange County, California, for West Nile virus [14].
  • Effect of Bacillus thuringiensis beta exotoxin on ultrastructures of midgut cells of Culex sitiens [15].
 

Biological context of Culex

 

Anatomical context of Culex

 

Associations of Culex with chemical compounds

  • Newly-hatched larvae of Culex pipiens grow well to adults in a chemically defined dietary medium containing cholesterol as the only lipid, but the adults cannot fly [26].
  • Serine proteinase over-expression in relation to deltamethrin resistance in Culex pipiens pallens [18].
  • Changes in cross-resistance spectrum resulting from methyl parathion selection of Culex tarsalis Coq [27].
  • Sodium and chloride regulation in freshwater and osmoconforming larvae of Culex mosquitoes [28].
  • Larvae of a field strain of Culex tarsalis Coq. manifesting a broad spectrum of resistance to organophosphorus (OP) insecticides were selected further by methyl parathion pressure in the laboratory [27].
 

Gene context of Culex

  • It also shows that the closest relative of alpha E1 amongst previously published esterase sequences is ESTB1, which confers organophosphate resistance in Culex mosquitoes [29].
  • Purified inclusions containing either Cry19A alone or Cry19A and ORF2 together were toxic to Anopheles stephensi and Culex pipiens mosquito larvae [30].
  • In Culex pipiens quinquefasciatus, high levels of OP resistance (approximately 800 times) are due to the esterase B1 gene, which is amplified at least 250-fold [7].
  • Mosquitoes from a laboratory colony of Culex quinquefasciatus from Matsu Island, China, develop irreversible paralytic symptoms after exposure to carbon dioxide at 1 degree [31].
  • In one mosquito (Culex pipiens), ace-1 was found to be tightly linked with insecticide resistance and probably encodes the AChE OP target [32].
 

Analytical, diagnostic and therapeutic context of Culex

  • In laboratory bioassays, gravid Culex quinquefasciatus mosquitoes were strongly attracted and or stimulated to oviposit by a habitat-derived chemical cue, 3-methylindole, at several concentrations ranging from 0.01 to 1 microgram/liter in water [33].
  • 1. The nonspecific esterases of the mosquito, Culex tarsalis, were examined through conventional and isoelectric focusing acrylamide gel electrophoresis [34].
  • Exogenous juvenile hormone and methoprene, but not male accessory gland substances or ovariectomy, affect the blood/nectar choice of female Culex nigripalpus mosquitoes [35].
  • Neutralization antibody titers of the sera were determined against the Nakayama strain and E-50 strain, isolated from wild Culex tritaeniorhynchus using clone C6/36 of Singh's Aedes albopictus mosquito cell culture [36].

References

  1. Unusual amino acid determinants of host range in the Mtx2 family of mosquitocidal toxins. Chan, S.W., Thanabalu, T., Wee, B.Y., Porter, A.G. J. Biol. Chem. (1996) [Pubmed]
  2. Effects of combined diethylcarbamazine and albendazole treatment of bancroftian filariasis on parasite uptake and development in Culex pipiens L. Farid, H.A., Hammad, R.E., Hassan, M.M., Ramzy, R.M., El Setouhy, M., Weil, G.J. Am. J. Trop. Med. Hyg. (2005) [Pubmed]
  3. Experimental transmission and field isolation studies implicating Culex pipiens as a vector of Rift Valley fever virus in Egypt. Meegan, J.M., Khalil, G.M., Hoogstraal, H., Adham, F.K. Am. J. Trop. Med. Hyg. (1980) [Pubmed]
  4. An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Nabeshima, T., Mori, A., Kozaki, T., Iwata, Y., Hidoh, O., Harada, S., Kasai, S., Severson, D.W., Kono, Y., Tomita, T. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  5. Failure of rubella virus to replicate in mosquitos. Tesh, R.B., Rosen, L. Intervirology (1975) [Pubmed]
  6. Evidence against the exon theory of genes derived from the triose-phosphate isomerase gene. Kwiatowski, J., Krawczyk, M., Kornacki, M., Bailey, K., Ayala, F.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  7. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Mouches, C., Pauplin, Y., Agarwal, M., Lemieux, L., Herzog, M., Abadon, M., Beyssat-Arnaouty, V., Hyrien, O., de Saint Vincent, B.R., Georghiou, G.P. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  8. Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. Vaughan, A., Hemingway, J. J. Biol. Chem. (1995) [Pubmed]
  9. Drought-induced amplification of Saint Louis encephalitis virus, Florida. Shaman, J., Day, J.F., Stieglitz, M. Emerging Infect. Dis. (2002) [Pubmed]
  10. Multiple origins of cyclodiene insecticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae). Andreev, D., Kreitman, M., Phillips, T.W., Beeman, R.W., ffrench-Constant, R.H. J. Mol. Evol. (1999) [Pubmed]
  11. Residual toxicity of deltamethrin and permethrin on various surfaces for mosquito species culex pipiens molestul Forskal. Rettich, F. Journal of hygiene, epidemiology, microbiology, and immunology. (1983) [Pubmed]
  12. The efficiency of various collection techniques for sampling Culex annulirostris in southeastern Australia. Russell, R.C. J. Am. Mosq. Control Assoc. (1985) [Pubmed]
  13. Effects of trap design and CO2 presentation on the measurement of adult mosquito abundance using Centers for Disease Control-style miniature light traps. Reisen, W.K., Meyer, R.P., Cummings, R.F., Delgado, O. J. Am. Mosq. Control Assoc. (2000) [Pubmed]
  14. Vector competence of Culex tarsalis from Orange County, California, for West Nile virus. Turell, M.J., O'Guinn, M.L., Dohm, D.J., Webb, J.P., Sardelis, M.R. Vector Borne Zoonotic Dis. (2002) [Pubmed]
  15. Effect of Bacillus thuringiensis beta exotoxin on ultrastructures of midgut cells of Culex sitiens. Weiser, J., Zizka, Z. Cytobios (1994) [Pubmed]
  16. Molecular characterization of the amplified aldehyde oxidase from insecticide resistant Culex quinquefasciatus. Coleman, M., Vontas, J.G., Hemingway, J. Eur. J. Biochem. (2002) [Pubmed]
  17. Molecular cloning and nucleotide sequence of a cytochrome P450 cDNA from a pyrethroid-resistant mosquito, Culex quinquefasciatus say. Kasai, S., Shono, T., Yamakawa, M. Insect Mol. Biol. (1998) [Pubmed]
  18. Serine proteinase over-expression in relation to deltamethrin resistance in Culex pipiens pallens. Gong, M., Shen, B., Gu, Y., Tian, H., Ma, L., Li, X., Yang, M., Hu, Y., Sun, Y., Hu, X., Li, J., Zhu, C. Arch. Biochem. Biophys. (2005) [Pubmed]
  19. A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens. Malcolm, C.A., Bourguet, D., Ascolillo, A., Rooker, S.J., Garvey, C.F., Hall, L.M., Pasteur, N., Raymond, M. Insect Mol. Biol. (1998) [Pubmed]
  20. Effects of insect hormones on hemagglutination activity in two members of the Culex pipiens complex. Gelbic, I., Olejnícek, J., Grubhoffer, L. Exp. Parasitol. (2002) [Pubmed]
  21. Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereus. Moar, W.J., Trumble, J.T., Hice, R.H., Backman, P.A. Appl. Environ. Microbiol. (1994) [Pubmed]
  22. Platelet-activating-factor-hydrolyzing phospholipase C in the salivary glands and saliva of the mosquito Culex quinquefasciatus. Ribeiro, J.M., Francischetti, I.M. J. Exp. Biol. (2001) [Pubmed]
  23. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Muller, R., Saluzzo, J.F., Lopez, N., Dreier, T., Turell, M., Smith, J., Bouloy, M. Am. J. Trop. Med. Hyg. (1995) [Pubmed]
  24. Partial loss of cytoplasmic incompatibility with age in males of Culex fatigans. Singh, K.R., Curtis, C.F., Krishnamurthy, B.S. Ann. Trop. Med. Parasitol. (1976) [Pubmed]
  25. Mesenteronal epithelial cell surface charge of the mosquito, Culex tarsalis Coquillett. Binding of colloidal iron hydroxide, native ferritin and cationized ferritin. Houk, E.J., Hardy, J.L., Chiles, R.E. J. Submicrosc. Cytol. (1986) [Pubmed]
  26. Essential fatty acids for the mosquito Culex pipiens. Dadd, R.H. J. Nutr. (1980) [Pubmed]
  27. Changes in cross-resistance spectrum resulting from methyl parathion selection of Culex tarsalis Coq. Apperson, C.S., Georghiou, G.P. Am. J. Trop. Med. Hyg. (1975) [Pubmed]
  28. Sodium and chloride regulation in freshwater and osmoconforming larvae of Culex mosquitoes. Patrick, M.L., Gonzalez, R.J., Bradley, T.J. J. Exp. Biol. (2001) [Pubmed]
  29. Molecular cloning of an alpha-esterase gene cluster on chromosome 3r of Drosophila melanogaster. Russell, R.J., Robin, G.C., Kostakos, P., Newcomb, R.D., Boyce, T.M., Medveczky, K.M., Oakeshott, J.G. Insect Biochem. Mol. Biol. (1996) [Pubmed]
  30. Contribution of the 65-kilodalton protein encoded by the cloned gene cry19A to the mosquitocidal activity of Bacillus thuringiensis subsp. jegathesan. Rosso, M.L., Delécluse, A. Appl. Environ. Microbiol. (1997) [Pubmed]
  31. Extrachromosomal inheritance of carbon dioxide sensitivity in the mosquito Culex quinquefasciatus. Shroyer, D.A., Rosen, L. Genetics (1983) [Pubmed]
  32. A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Weill, M., Fort, P., Berthomieu, A., Dubois, M.P., Pasteur, N., Raymond, M. Proc. Biol. Sci. (2002) [Pubmed]
  33. Interaction of the Culex quinquefasciatus egg raft pheromone with a natural chemical associated with oviposition sites. Millar, J.G., Chaney, J.D., Beehler, J.W., Mulla, M.S. J. Am. Mosq. Control Assoc. (1994) [Pubmed]
  34. Electrophoretic characterization of the nonspecific esterases of the mosquito, Culex tarsalis: conventional and isoelectric focused acrylamide gels. Houk, E.J., Cruz, W.O., Hardy, J.L. Comp. Biochem. Physiol., B (1978) [Pubmed]
  35. Exogenous juvenile hormone and methoprene, but not male accessory gland substances or ovariectomy, affect the blood/nectar choice of female Culex nigripalpus mosquitoes. Hancock, R.G., Foster, W.A. Med. Vet. Entomol. (2000) [Pubmed]
  36. Neutralization antibody responses induced by Japanese encephalitis virus vaccine. Susilowati, S., Okuno, Y., Fukunaga, T., Tadano, M., Juang, R.F., Fukai, K. Biken journal. (1981) [Pubmed]
 
WikiGenes - Universities