The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Olfactory Pathways

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Olfactory Pathways


Psychiatry related information on Olfactory Pathways


High impact information on Olfactory Pathways


Chemical compound and disease context of Olfactory Pathways


Biological context of Olfactory Pathways


Anatomical context of Olfactory Pathways


Associations of Olfactory Pathways with chemical compounds


Gene context of Olfactory Pathways

  • As the olfactory deficits vary according to chemical identity and concentration, they indicate that a spectrum of arrestin activity is essential for odor processing depending upon the particular olfactory pathway involved [23].
  • These results suggest that olfC is allelic to mys and functions together with alphaPS2 integrins in the olfactory pathway in Drosophila [24].
  • Here, we show that in the absence of the LIM-homeodomain (LIM-HD) gene Lhx2, a particular amygdaloid nucleus, the nucleus of the lateral olfactory tract (nLOT), is selectively disrupted [25].
  • Neurons dually-labeled for TH and AADC were found in the anterior olfactory nucleus, olfactory tubercle and the ventral margin of the rostral nucleus accumbens [26].
  • CONCLUSION: The dentate hilar neurons projecting to the olfactory tubercle cannot be considered displaced cells of CA3 but represent true dentato-tubercular projection neurons [27].

Analytical, diagnostic and therapeutic context of Olfactory Pathways


  1. Bovine herpesvirus 5 glycoprotein E is important for neuroinvasiveness and neurovirulence in the olfactory pathway of the rabbit. Chowdhury, S.I., Lee, B.J., Ozkul, A., Weiss, M.L. J. Virol. (2000) [Pubmed]
  2. Biochemical and immunological studies with human optic and olfactory tracts. Ansari, K.A., Rand, A., Loch, J.A. J. Neuropathol. Exp. Neurol. (1978) [Pubmed]
  3. Magnetic resonance imaging for diagnosis of congenital anosmia. Aiba, T., Inoue, Y., Matsumoto, K., Shakudo, M., Hashimoto, K., Yamane, H. Acta oto-laryngologica. Supplementum. (2004) [Pubmed]
  4. Effect of injections of 6-OHDA into either nucleus accumbens septi or frontal cortex on spontaneous and drug-induced activity. Joyce, E.M., Stinus, L., Iversen, S.D. Neuropharmacology (1983) [Pubmed]
  5. Computational parallels between the biological olfactory pathway and its analogue 'the electronic nose': Part I. Biological olfaction. Pearce, T.C. BioSystems (1997) [Pubmed]
  6. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Franks, K.M., Isaacson, J.S. Neuron (2006) [Pubmed]
  7. Sniffing Out NMDA Receptors in the Olfactory Cortex. Philpot, B.D. Neuron (2005) [Pubmed]
  8. Pax6-dependent boundary defines alignment of migrating olfactory cortex neurons via the repulsive activity of ephrin A5. Nomura, T., Holmberg, J., Frisen, J., Osumi, N. Development (2006) [Pubmed]
  9. Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. Koob, G.F., Riley, S.J., Smith, S.C., Robbins, T.W. Journal of comparative and physiological psychology. (1978) [Pubmed]
  10. The actions of pentobarbitone, procaine and tetrodotoxin on synaptic transmission in the olfactory cortex of the guinea-pig. Richards, C.D. Br. J. Pharmacol. (1982) [Pubmed]
  11. Sites and mechanisms of action of catechol (1,2-dihydroxybenzene) in the rat olfactory cortex slice. Collins, G.G., Dewhurst, D.G. Br. J. Pharmacol. (1986) [Pubmed]
  12. NMDA-dependent induction of long-term potentiation in afferent and association fiber systems of piriform cortex in vitro. Kanter, E.D., Haberly, L.B. Brain Res. (1990) [Pubmed]
  13. Pre- and postsynaptic effects of zinc on in vitro prepyriform neurones. Smart, T.G., Constanti, A. Neurosci. Lett. (1983) [Pubmed]
  14. Distribution of cocaine recognition sites in monkey brain: I. In vitro autoradiography with [3H]CFT. Kaufman, M.J., Spealman, R.D., Madras, B.K. Synapse (1991) [Pubmed]
  15. Autoradiographic localization of thyrotropin-releasing hormone receptors in the rat central nervous system. Manaker, S., Winokur, A., Rostene, W.H., Rainbow, T.C. J. Neurosci. (1985) [Pubmed]
  16. Cloning and expression of a human somatostatin-14-selective receptor variant (somatostatin receptor 4) located on chromosome 20. Demchyshyn, L.L., Srikant, C.B., Sunahara, R.K., Kent, G., Seeman, P., Van Tol, H.H., Panetta, R., Patel, Y.C., Niznik, H.B. Mol. Pharmacol. (1993) [Pubmed]
  17. Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Pasterkamp, R.J., Giger, R.J., Ruitenberg, M.J., Holtmaat, A.J., De Wit, J., De Winter, F., Verhaagen, J. Mol. Cell. Neurosci. (1999) [Pubmed]
  18. Importance of thiol groups in ligand binding to D2 dopamine receptors from brain and anterior pituitary gland. Chazot, P.L., Strange, P.G. Biochem. J. (1992) [Pubmed]
  19. Clinical testing of olfaction reassessed. Pinching, A.J. Brain (1977) [Pubmed]
  20. Cellular uptake of gamma-aminobutyric acid influences its potency on neurones of olfactory cortex in vitro [proceedings]. Galvan, M., Scholfield, C.N. J. Physiol. (Lond.) (1978) [Pubmed]
  21. Levels and synthesis of glutamate and aspartate in the olfactory cortex following bulbectomy. Scholfield, C.N., Moroni, F., Corradetti, R., Pepeu, G. J. Neurochem. (1983) [Pubmed]
  22. Release of radioactive glutamic acid from thin sections of guinea-pig olfactory cortex in vitro. Matsui, S., Yamamoto, C. J. Neurochem. (1975) [Pubmed]
  23. Odorant-specific requirements for arrestin function in Drosophila olfaction. Merrill, C.E., Sherertz, T.M., Walker, W.B., Zwiebel, L.J. J. Neurobiol. (2005) [Pubmed]
  24. Genetic analysis of olfC demonstrates a role for the position-specific integrins in the olfactory system of Drosophila melanogaster. Ayyub, C., Rodrigues, V., Hasan, G., Siddiqi, O. Mol. Gen. Genet. (2000) [Pubmed]
  25. LIM genes parcellate the embryonic amygdala and regulate its development. Remedios, R., Subramanian, L., Tole, S. J. Neurosci. (2004) [Pubmed]
  26. A dopamine-synthesizing cell group demonstrated in the human basal forebrain by dual labeling immunohistochemical technique of tyrosine hydroxylase and aromatic L-amino acid decarboxylase. Ikemoto, K., Nagatsu, I., Kitahama, K., Jouvet, A., Nishimura, A., Nishi, K., Maeda, T., Arai, R. Neurosci. Lett. (1998) [Pubmed]
  27. An extrahippocampal projection from the dentate gyrus to the olfactory tubercle. Künzle, H. BMC neuroscience [electronic resource]. (2005) [Pubmed]
  28. Electrophysiological responses of single olfactory bulb neurons to amino acids in the channel catfish, Ictalurus punctatus. Kang, J., Caprio, J. J. Neurophysiol. (1995) [Pubmed]
  29. Differential distribution of inositol 1,4,5-triphosphate receptors in the rat olfactory bulb. Slawecki, M.L., Carlson, G.C., Keller, A. J. Comp. Neurol. (1997) [Pubmed]
  30. Persistent muscarinic excitation in guinea-pig olfactory cortex neurons: involvement of a slow post-stimulus afterdepolarizing current. Constanti, A., Bagetta, G., Libri, V. Neuroscience (1993) [Pubmed]
  31. The olfactory tubercle of the cat. II. Immunohistochemical compartmentation. Wahle, P., Meyer, G. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1986) [Pubmed]
  32. Ro 15-1788 is a potent antagonist of benzodiazepines in the olfactory cortex slice. Scholfield, C.N. Pflugers Arch. (1983) [Pubmed]
WikiGenes - Universities