The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Daytrana     methyl2-phenyl-2-(2- piperidyl)ethanoate

Synonyms: Metadate, Methylin, Ritaline, Centedrin, Ritalin, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ritalin


Psychiatry related information on Ritalin


High impact information on Ritalin


Chemical compound and disease context of Ritalin


Biological context of Ritalin


Anatomical context of Ritalin

  • In contrast, addicts showed an increased response to methylphenidate in the thalamus (a region that conveys sensory input to the cortex) [22].
  • Administration of either amphetamine or methylphenidate evoked Fos-like immunoreactivity in a large number of neurons in the striatum and whole cortex, especially in the caudate nucleus and mediofrontal cortex, which are known to be dopaminergic targets [15].
  • That is, when subjects expected to receive methylphenidate but received placebo there were significant increases in ventral cingulate gyrus (BA 25) and nucleus accumbens (regions involved with emotional reactivity and reward) [23].
  • Methylphenidate-induced changes in the right orbitofrontal cortex and right striatum were associated with craving, and those in the prefrontal cortex were associated with mood [24].
  • Methylphenidate significantly increased "relative" (region relative to the whole brain) metabolism in the cerebellum and decreased it in the basal ganglia [25].

Associations of Ritalin with other chemical compounds


Gene context of Ritalin


Analytical, diagnostic and therapeutic context of Ritalin


  1. Reversible hemiplegia after presumed intracarotid injection of Ritalin. Chillar, R.K., Jackson, A.L. N. Engl. J. Med. (1981) [Pubmed]
  2. Methylphenidate-induced cardiac arrhythmias. Lucas, P.B., Gardner, D.L., Wolkowitz, O.M., Tucker, E.E., Cowdry, R.W. N. Engl. J. Med. (1986) [Pubmed]
  3. Tics following methylphenidate administration. A report of 20 cases. Denckla, M.B., Bemporad, J.R., MacKay, M.C. JAMA (1976) [Pubmed]
  4. Cerebral arteritis and oral methylphenidate. Trugman, J.M. Lancet (1988) [Pubmed]
  5. Prediction of relapse in schizophrenia. Lieberman, J.A., Kane, J.M., Sarantakos, S., Gadaleta, D., Woerner, M., Alvir, J., Ramos-Lorenzi, J. Arch. Gen. Psychiatry (1987) [Pubmed]
  6. Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Teicher, M.H., Anderson, C.M., Polcari, A., Glod, C.A., Maas, L.C., Renshaw, P.F. Nat. Med. (2000) [Pubmed]
  7. Methylphenidate in hyperkinetic children: differences in dose effects on learning and social behavior. Sprague, R.L., Sleator, E.K. Science (1977) [Pubmed]
  8. Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Andersen, S.L., Arvanitogiannis, A., Pliakas, A.M., LeBlanc, C., Carlezon, W.A. Nat. Neurosci. (2002) [Pubmed]
  9. Efficacy of methylphenidate for attention-deficit hyperactivity disorder in children with tic disorder. Gadow, K.D., Sverd, J., Sprafkin, J., Nolan, E.E., Ezor, S.N. Arch. Gen. Psychiatry (1995) [Pubmed]
  10. Methylphenidate effects in learning disabilities. Psychometric changes. Gittleman-Klein, R., Klein, D.F. Arch. Gen. Psychiatry (1976) [Pubmed]
  11. Diagnosis and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Council on Scientific Affairs, American Medical Association. Goldman, L.S., Genel, M., Bezman, R.J., Slanetz, P.J. JAMA (1998) [Pubmed]
  12. Cardiovascular responses of hyperactive children to methylphenidate. Ballard, J.E., Boileau, R.A., Sleator, E.K., Massey, B.H., Sprague, R.L. JAMA (1976) [Pubmed]
  13. Psychotic exacerbations and enhanced vasopressin secretion in schizophrenic patients with hyponatremia and polydipsia. Goldman, M.B., Robertson, G.L., Luchins, D.J., Hedeker, D., Pandey, G.N. Arch. Gen. Psychiatry (1997) [Pubmed]
  14. Pemoline, methylphenidate, and placebo in children with minimal brain dysfunction. Conners, C.K., Taylor, E. Arch. Gen. Psychiatry (1980) [Pubmed]
  15. Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Lin, J.S., Hou, Y., Jouvet, M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  16. The dopamine transporter: importance in Parkinson's disease. Nutt, J.G., Carter, J.H., Sexton, G.J. Ann. Neurol. (2004) [Pubmed]
  17. Paradoxical striatal cellular signaling responses to psychostimulants in hyperactive mice. Beaulieu, J.M., Sotnikova, T.D., Gainetdinov, R.R., Caron, M.G. J. Biol. Chem. (2006) [Pubmed]
  18. Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Volkow, N.D., Ding, Y.S., Fowler, J.S., Wang, G.J., Logan, J., Gatley, J.S., Dewey, S., Ashby, C., Liebermann, J., Hitzemann, R. Arch. Gen. Psychiatry (1995) [Pubmed]
  19. Stimulant-Induced Enhanced Sexual Desire as a Potential Contributing Factor in HIV Transmission. Volkow, N.D., Wang, G.J., Fowler, J.S., Telang, F., Jayne, M., Wong, C. The American journal of psychiatry (2007) [Pubmed]
  20. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Anderson, C.M., Polcari, A., Lowen, S.B., Renshaw, P.F., Teicher, M.H. The American journal of psychiatry. (2002) [Pubmed]
  21. Modification of practice-dependent plasticity in human motor cortex by neuromodulators. Meintzschel, F., Ziemann, U. Cereb. Cortex (2006) [Pubmed]
  22. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Volkow, N.D., Wang, G.J., Fowler, J.S., Logan, J., Gatley, S.J., Hitzemann, R., Chen, A.D., Dewey, S.L., Pappas, N. Nature (1997) [Pubmed]
  23. Effects of expectation on the brain metabolic responses to methylphenidate and to its placebo in non-drug abusing subjects. Volkow, N.D., Wang, G.J., Ma, Y., Fowler, J.S., Wong, C., Jayne, M., Telang, F., Swanson, J.M. Neuroimage (2006) [Pubmed]
  24. Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Volkow, N.D., Wang, G.J., Fowler, J.S., Hitzemann, R., Angrist, B., Gatley, S.J., Logan, J., Ding, Y.S., Pappas, N. The American journal of psychiatry. (1999) [Pubmed]
  25. Effects of methylphenidate on regional brain glucose metabolism in humans: relationship to dopamine D2 receptors. Volkow, N.D., Wang, G.J., Fowler, J.S., Logan, J., Angrist, B., Hitzemann, R., Lieberman, J., Pappas, N. The American journal of psychiatry. (1997) [Pubmed]
  26. Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Kusaga, A., Yamashita, Y., Koeda, T., Hiratani, M., Kaneko, M., Yamada, S., Matsuishi, T. Ann. Neurol. (2002) [Pubmed]
  27. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Honey, G.D., Suckling, J., Zelaya, F., Long, C., Routledge, C., Jackson, S., Ng, V., Fletcher, P.C., Williams, S.C., Brown, J., Bullmore, E.T. Brain (2003) [Pubmed]
  28. PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Spencer, T.J., Biederman, J., Ciccone, P.E., Madras, B.K., Dougherty, D.D., Bonab, A.A., Livni, E., Parasrampuria, D.A., Fischman, A.J. The American journal of psychiatry. (2006) [Pubmed]
  29. Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Gill, M., Daly, G., Heron, S., Hawi, Z., Fitzgerald, M. Mol. Psychiatry (1997) [Pubmed]
  30. In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter. Spencer, T.J., Biederman, J., Madras, B.K., Faraone, S.V., Dougherty, D.D., Bonab, A.A., Fischman, A.J. Biol. Psychiatry (2005) [Pubmed]
  31. cAMP and extracellular signal-regulated kinase signaling in response to d-amphetamine and methylphenidate in the prefrontal cortex in vivo: role of beta 1-adrenoceptors. Pascoli, V., Valjent, E., Corbillé, A.G., Corvol, J.C., Tassin, J.P., Girault, J.A., Hervé, D. Mol. Pharmacol. (2005) [Pubmed]
  32. Single-dose pharmacokinetics of methylphenidate in CYP2D6 extensive and poor metabolizers. DeVane, C.L., Markowitz, J.S., Carson, S.W., Boulton, D.W., Gill, H.S., Nahas, Z., Risch, S.C. Journal of clinical psychopharmacology. (2000) [Pubmed]
  33. Methylphenidate and hyperactivity: effects on teacher behaviors. Whalen, C.K., Henker, B., Dotemoto, S. Science (1980) [Pubmed]
  34. Clinical trials. Planned Ritalin trial for tots heads into uncharted waters. Marshall, E. Science (2000) [Pubmed]
  35. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Vaidya, C.J., Austin, G., Kirkorian, G., Ridlehuber, H.W., Desmond, J.E., Glover, G.H., Gabrieli, J.D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  36. Sleep apnea, narcolepsy, and dreaming: regional cerebral hemodynamics. Meyer, J.S., Sakai, F., Karacan, I., Derman, S., Yamamoto, M. Ann. Neurol. (1980) [Pubmed]
WikiGenes - Universities