The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Bche  -  butyrylcholinesterase

Mus musculus

Synonyms: Acylcholine acylhydrolase, Butyrylcholine esterase, C730038G20Rik, Choline esterase II, Cholinesterase, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bche


Psychiatry related information on Bche

  • Selective, reversible inhibition of brain BChE may represent a treatment for Alzheimer's disease, improving cognition and modulating neuropathological markers of the disease [6].
  • Although treatment with PB concurrent with stress did not produce further changes in either BuChE activity or acoustic startle responding, stress-induced alterations in drinking behavior (and thereby the dose of PB ingested) may have affected these results [7].
  • Measurements of plasma enzyme concentration, antibody titer determinations, and measurement of cocaine-induced locomotor activity in mice were used to describe the disposition of butyrylcholinesterase [8].

High impact information on Bche


Chemical compound and disease context of Bche


Biological context of Bche


Anatomical context of Bche


Associations of Bche with chemical compounds

  • BChE apparently is not implicated in limiting the duration of acetylcholine action on postsynaptic receptors, but is involved in a presynaptic modulatory step of the release process [19].
  • Nullizygous mice were highly sensitive to the toxic effects of the organophosphate diisopropylfluorophosphate and to the butyrylcholinesterase-specific inhibitor bambuterol [22].
  • Inhibition of both AChE and BChE with galanthamine (80 micro M), neostigmine (3-10 micro M), O-ethylS-2-(diisopropylamino)ethyl-methylphosphono-thioate (MTP) or phospholine decreased evoked transmitter release (20-50%) [19].
  • Acute and chronic isoflurane anaesthesia diminished BuChE activity by 70-90% in whole brain instead cerebellum and hippocampus mAChR levels were only altered by chronic enflurane anaesthesia [20].
  • The amphiphilic properties of the several AChE and BuChE molecules were analyzed by Triton X-114 phase-partitioning and by phenyl-agarose chromatography [23].

Enzymatic interactions of Bche


Regulatory relationships of Bche

  • BuChE activity in females was only slightly influenced even at 300 p.p.m. Liver weight was increased in a time and concentration dependent manner in both sexes [25].

Other interactions of Bche


Analytical, diagnostic and therapeutic context of Bche


  1. Muscular dystrophy alters the processing of light acetylcholinesterase but not butyrylcholinesterase forms in liver of Lama2(dy) mice. Gómez, J.L., García-Ayllón, M.S., Campoy, F.J., Vidal, C.J. J. Neurosci. Res. (2000) [Pubmed]
  2. Respiratory survival mechanisms in acetylcholinesterase knockout mouse. Chatonnet, F., Boudinot, E., Chatonnet, A., Taysse, L., Daulon, S., Champagnat, J., Foutz, A.S. Eur. J. Neurosci. (2003) [Pubmed]
  3. Muscular dystrophy with laminin deficiency decreases the content of butyrylcholinesterase tetramers in sciatic nerves of Lama2dy mice. Moral-Naranjo, M.T., Cabezas-Herrera, J., Vidal, C.J., Campoy, F.J. Neurosci. Lett. (2002) [Pubmed]
  4. Activation of acetyl- and butyrylcholinesterase by enzymatic removal of sialic acid from intact neuroblastoma and astroblastoma cells in culture. Stefanovic, V., Mandel, P., Rosenberg, A. Biochemistry (1975) [Pubmed]
  5. Importance of aliesterase as a detoxification mechanism for soman (Pinacolyl methylphosphonofluoridate) in mice. Clement, J.G. Biochem. Pharmacol. (1984) [Pubmed]
  6. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Greig, N.H., Utsuki, T., Ingram, D.K., Wang, Y., Pepeu, G., Scali, C., Yu, Q.S., Mamczarz, J., Holloway, H.W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., Lahiri, D.K. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Effects of inescapable stress and treatment with pyridostigmine bromide on plasma butyrylcholinesterase and the acoustic startle response in rats. Servatius, R.J., Ottenweller, J.E., Guo, W., Beldowicz, D., Zhu, G., Natelson, B.H. Physiol. Behav. (2000) [Pubmed]
  8. Characterization of equine butyrylcholinesterase disposition in the mouse. Koetzner, L., Woods, J.H. Drug Metab. Dispos. (2002) [Pubmed]
  9. Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species. Rachinsky, T.L., Camp, S., Li, Y., Ekström, T.J., Newton, M., Taylor, P. Neuron (1990) [Pubmed]
  10. Genetic analysis of collagen Q: roles in acetylcholinesterase and butyrylcholinesterase assembly and in synaptic structure and function. Feng, G., Krejci, E., Molgo, J., Cunningham, J.M., Massoulié, J., Sanes, J.R. J. Cell Biol. (1999) [Pubmed]
  11. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer's disease. Liston, D.R., Nielsen, J.A., Villalobos, A., Chapin, D., Jones, S.B., Hubbard, S.T., Shalaby, I.A., Ramirez, A., Nason, D., White, W.F. Eur. J. Pharmacol. (2004) [Pubmed]
  12. Organophosphorus pesticide-induced butyrylcholinesterase inhibition and potentiation of succinylcholine toxicity in mice. Sparks, S.E., Quistad, G.B., Casida, J.E. J. Biochem. Mol. Toxicol. (1999) [Pubmed]
  13. Perchloroethylene: effects on body and organ weights and plasma butyrylcholinesterase activity in mice. Kjellstrand, P., Holmquist, B., Kanje, M., Alm, P., Romare, S., Jonsson, I., Månsson, L., Bjerkemo, M. Acta pharmacologica et toxicologica. (1984) [Pubmed]
  14. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Adler, M., Manley, H.A., Purcell, A.L., Deshpande, S.S., Hamilton, T.A., Kan, R.K., Oyler, G., Lockridge, O., Duysen, E.G., Sheridan, R.E. Muscle Nerve (2004) [Pubmed]
  15. Thymus Acetylcholinesterase Activity is Reduced in Mice With Congenital Muscular Dystrophy. Nieto-Cer??n, S., Del Campo, L.F., Delgado, E.M., Vidal, C.J., Campoy, F.J. J. Mol. Neurosci. (2006) [Pubmed]
  16. Remodeling of the neuromuscular junction in mice with deleted exons 5 and 6 of acetylcholinesterase. Girard, E., Bernard, V., Camp, S., Taylor, P., Krejci, E., Molg??, J. J. Mol. Neurosci. (2006) [Pubmed]
  17. Effects of acetylcholinesterase and butyrylcholinesterase inhibition on breathing in mice adapted or not to reduced acetylcholinesterase. Boudinot, E., Taysse, L., Daulon, S., Chatonnet, A., Champagnat, J., Foutz, A.S. Pharmacol. Biochem. Behav. (2005) [Pubmed]
  18. Inhibitory effects of huperzine B on cholinesterase activity in mice. Liu, J., Zhang, H.Y., Wang, L.M., Tang, X.C. Zhongguo yao li xue bao = Acta pharmacologica Sinica. (1999) [Pubmed]
  19. Butyrylcholinesterase and acetylcholinesterase activity and quantal transmitter release at normal and acetylcholinesterase knockout mouse neuromuscular junctions. Minic, J., Chatonnet, A., Krejci, E., Molgó, J. Br. J. Pharmacol. (2003) [Pubmed]
  20. The effects of some porphyrinogenic drugs on the brain cholinergic system. Rodriguez, J.A., Buzaleh, A.M., Fossati, M., Azcurra, J., Batlle, A.M. Cell. Mol. Biol. (Noisy-le-grand) (2002) [Pubmed]
  21. Time course of neocortical graft innervation by AChE-positive fibers. Clinton, R.J., Ebner, F.F. J. Comp. Neurol. (1988) [Pubmed]
  22. Postnatal developmental delay and supersensitivity to organophosphate in gene-targeted mice lacking acetylcholinesterase. Xie, W., Stribley, J.A., Chatonnet, A., Wilder, P.J., Rizzino, A., McComb, R.D., Taylor, P., Hinrichs, S.H., Lockridge, O. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  23. Molecular forms of acetyl- and butyrylcholinesterase in normal and dystrophic mouse brain. Moral-Naranjo, M.T., Cabezas-Herrera, J., Vidal, C.J. J. Neurosci. Res. (1996) [Pubmed]
  24. The anticancer prodrug CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase. Morton, C.L., Wadkins, R.M., Danks, M.K., Potter, P.M. Cancer Res. (1999) [Pubmed]
  25. Trichloroethylene: further studies of the effects on body and organ weights and plasma butyrylcholinesterase activity in mice. Kjellstrand, P., Holmquist, B., Alm, P., Kanje, M., Romare, S., Jonsson, I., Månsson, L., Bjerkemo, M. Acta pharmacologica et toxicologica. (1983) [Pubmed]
  26. Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. Duysen, E.G., Li, B., Xie, W., Schopfer, L.M., Anderson, R.S., Broomfield, C.A., Lockridge, O. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  27. Amyloid precursor protein fragment and acetylcholinesterase increase with cell confluence and differentiation in a neuronal cell line. Bronfman, F.C., Fernandez, H.L., Inestrosa, N.C. Exp. Cell Res. (1996) [Pubmed]
  28. Synthesis and cholinergic properties of N-aryl-2-[[[5-[(dimethylamino)methyl]-2-furanyl]methyl]thio]ethylamino analogs of ranitidine. Valli, M.J., Tang, Y., Kosh, J.W., Chapman, J.M., Sowell, J.W. J. Med. Chem. (1992) [Pubmed]
  29. Radiolabeled cholinesterase substrates: in vitro methods for determining structure-activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity. Snyder, S.E., Gunupudi, N., Sherman, P.S., Butch, E.R., Skaddan, M.B., Kilbourn, M.R., Koeppe, R.A., Kuhl, D.E. J. Cereb. Blood Flow Metab. (2001) [Pubmed]
  30. Characterization of delayed neurotoxicity in the mouse following chronic oral administration of tri-o-cresyl phosphate. Lapadula, D.M., Patton, S.E., Campbell, G.A., Abou-Donia, M.B. Toxicol. Appl. Pharmacol. (1985) [Pubmed]
  31. Tritium labeling of a powerful methylphosphonate inhibitor of cholinesterase: synthesis and biological applications. Balan, A., Barness, I., Simon, G., Levy, D., Ashani, Y. Anal. Biochem. (1988) [Pubmed]
  32. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Jbilo, O., Bartels, C.F., Chatonnet, A., Toutant, J.P., Lockridge, O. Toxicon (1994) [Pubmed]
  33. Localization of mRNAs encoding acetylcholinesterase and butyrylcholinesterase in the rat spinal cord by nonradioactive in situ hybridization. Mis, K., Mars, T., Jevsek, M., Brank, M., Zajc-Kreft, K., Grubic, Z. J. Histochem. Cytochem. (2003) [Pubmed]
WikiGenes - Universities