The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Ptpn2  -  protein tyrosine phosphatase, non-receptor...

Mus musculus

Synonyms: AI325124, MPTP, Protein-tyrosine phosphatase PTP-2, Ptpt, TC-PTP, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ptpn2


Psychiatry related information on Ptpn2


High impact information on Ptpn2


Chemical compound and disease context of Ptpn2


Biological context of Ptpn2


Anatomical context of Ptpn2

  • The T cell protein tyrosine phosphatase (TC-PTP) is one of the most abundant mammalian tyrosine phosphatases in hematopoietic cells; however, its role in hematopoietic cell function remains unknown [1].
  • BM transplantation experiments showed that hematopoietic failure in TC-PTP -/- animals was not due to a stem cell defect, but rather to a stromal cell deficiency [1].
  • Moreover, hyperosmotic stress did not induce the cytoplasmic accumulation of a green fluorescent protein-TC45 fusion protein that was too large to diffuse across the nuclear pore [19].
  • In this study we have examined the intracellular distribution of TC-PTP in a glial cell line (C6) [20].
  • High levels of detergent-soluble tyrosine phosphatase were measured in the particular fraction of pancreatic islets with a substrate preferred by PTP1B/TCPTP-type protein tyrosine phosphatases [21].

Associations of Ptpn2 with chemical compounds

  • In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF beta receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors [17].
  • The hyperosmotic stress-induced nuclear exit of TC45 was not inhibited by leptomycin B, indicating that TC45 nuclear exit was independent of the exportin CRM-1 [19].
  • Differential intracellular compartmentalization of phosphotyrosine phosphatases in a glial cell line: TC-PTP versus PTP-1B [20].
  • MPTP, a neurotoxin that inhibits mitochondrial complex I, is a prototype for an environmental cause of PD because it produces a pattern of DA neurodegeneration that closely resembles the neuropathology of PD [22].
  • In vitro TGF-beta protects neurons from damage induced by treatment with beta-amyloid peptide, FeSO4 (induces production of reactive oxygen species), Ca2+ ionophores, glutamate, glutamate receptor agonists and MPTP (toxic for dopaminergic neurons) [23].

Enzymatic interactions of Ptpn2


Regulatory relationships of Ptpn2


Other interactions of Ptpn2

  • In order to test whether these two phosphatases can act synergistically, hydrodynamic injection was applied to deliver small interfering RNA (siRNA) of PTP1B and/or TCPTP to mouse liver [18].
  • The number of CSF-1-dependent CFU is increased in Tcptp-/- bone marrow [24].
  • Furthermore, we have identified the CSF-1 receptor (CSF-1R) as a physiological target of Tcptp through substrate-trapping experiments and its hyperphosphorylation in Tcptp-/- macrophages [24].
  • RESULTS: We have identified two members of the Janus family of tyrosine kinases (JAKs), JAK1 and JAK3, as bona fide substrates of TCPTP [25].
  • Inherent substrate specificity in the TCPTP-JAK interaction is demonstrated by the inability of other closely related PTP family members to form an in vivo interaction with the JAKs in hematopoietic cells [25].

Analytical, diagnostic and therapeutic context of Ptpn2

  • In situ hybridization of brain samples revealed that MPTP delta mRNA is present in the hippocampus, thalamic reticular nucleus, and piriform cortex, where some Src family PTKs have been also demonstrated to exist [26].
  • Analysis by confocal microscopy revealed that, in TC-PTP ko MEFs, activated PDGF beta-receptors colocalized with Rab4a, a marker for rapid recycling [27].
  • Recent evidence for the involvement of sgk1 in the early pathogenesis of MPTP-induced Parkinson's disease (PD) prompted us to investigate in more detail its expression and role in animal models of different neurodegenerative diseases [28].
  • In the presence of 7-NI, a dose of 40 mg/kg MPTP produced MPP concentrations similar to those measured after treatment with 20 mg/kg MPTP alone [29].
  • After oral administration in MPTP-treated mice, V-10,367 completely protected against MPTP-induced loss of striatal TH+ axonal density, while FK506 did not [30].


  1. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. You-Ten, K.E., Muise, E.S., Itié, A., Michaliszyn, E., Wagner, J., Jothy, S., Lapp, W.S., Tremblay, M.L. J. Exp. Med. (1997) [Pubmed]
  2. The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. Klingler-Hoffmann, M., Fodero-Tavoletti, M.T., Mishima, K., Narita, Y., Cavenee, W.K., Furnari, F.B., Huang, H.J., Tiganis, T. J. Biol. Chem. (2001) [Pubmed]
  3. Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Grimsby, J., Toth, M., Chen, K., Kumazawa, T., Klaidman, L., Adams, J.D., Karoum, F., Gal, J., Shih, J.C. Nat. Genet. (1997) [Pubmed]
  4. MPTP toxicity: implications for research in Parkinson's disease. Kopin, I.J., Markey, S.P. Annu. Rev. Neurosci. (1988) [Pubmed]
  5. Neuroprotective effects of cystamine in aged parkinsonian mice. Tremblay, M.E., Saint-Pierre, M., Bourhis, E., Lévesque, D., Rouillard, C., Cicchetti, F. Neurobiol. Aging (2006) [Pubmed]
  6. Levodopa-induced hyperactivity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Nicholas, A.P. Mov. Disord. (2007) [Pubmed]
  7. Administration of GM1 ganglioside eliminates neuroleptic-induced sensorimotor deficits in MPTP-treated mice. Weihmuller, F.B., Hadjiconstantinou, M., Bruno, J.P., Neff, N.H. Neurosci. Lett. (1988) [Pubmed]
  8. Electroconvulsive shock does not modify striatal contents of dopamine in MPTP-treated mice. Garcia, E., Sotelo, J. Neurochem. Res. (1993) [Pubmed]
  9. Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J.M., Rhee, J., J??ger, S., Handschin, C., Zheng, K., Lin, J., Yang, W., Simon, D.K., Bachoo, R., Spiegelman, B.M. Cell (2006) [Pubmed]
  10. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Liberatore, G.T., Jackson-Lewis, V., Vukosavic, S., Mandir, A.S., Vila, M., McAuliffe, W.G., Dawson, V.L., Dawson, T.M., Przedborski, S. Nat. Med. (1999) [Pubmed]
  11. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Heikkila, R.E., Hess, A., Duvoisin, R.C. Science (1984) [Pubmed]
  12. Ironic fate: can a banned drug control metal heavies in neurodegenerative diseases? Cole, G.M. Neuron (2003) [Pubmed]
  13. Benztropine inhibits toxicity of MPTP in mice. Bradbury, A.J., Kelly, M.E., Costall, B., Naylor, R.J., Jenner, P., Marsden, G.D. Lancet (1985) [Pubmed]
  14. MPTP: a neurotoxin relevant to the pathophysiology of Parkinson's disease. The 1985 George C. Cotzias lecture. Snyder, S.H., D'Amato, R.J. Neurology (1986) [Pubmed]
  15. Reduced MPTP toxicity in noradrenaline transporter knockout mice. Rommelfanger, K.S., Weinshenker, D., Miller, G.W. J. Neurochem. (2004) [Pubmed]
  16. Differential protection against MPTP or methamphetamine toxicity in dopamine neurons by deletion of ppN/OFQ expression. Brown, J.M., Gouty, S., Iyer, V., Rosenberger, J., Cox, B.M. J. Neurochem. (2006) [Pubmed]
  17. Site-selective regulation of platelet-derived growth factor beta receptor tyrosine phosphorylation by T-cell protein tyrosine phosphatase. Persson, C., Sävenhed, C., Bourdeau, A., Tremblay, M.L., Markova, B., Böhmer, F.D., Haj, F.G., Neel, B.G., Elson, A., Heldin, C.H., Rönnstrand, L., Ostman, A., Hellberg, C. Mol. Cell. Biol. (2004) [Pubmed]
  18. Effects of small interference RNA against PTP1B and TCPTP on insulin signaling pathway in mouse liver: Evidence for non-synergetic cooperation. Xu, J., Li, L., Hong, J., Huang, W. Cell Biol. Int. (2007) [Pubmed]
  19. Cellular stress regulates the nucleocytoplasmic distribution of the protein-tyrosine phosphatase TCPTP. Lam, M.H., Michell, B.J., Fodero-Tavoletti, M.T., Kemp, B.E., Tonks, N.K., Tiganis, T. J. Biol. Chem. (2001) [Pubmed]
  20. Differential intracellular compartmentalization of phosphotyrosine phosphatases in a glial cell line: TC-PTP versus PTP-1B. Faure, R., Posner, B.I. Glia (1993) [Pubmed]
  21. A non-receptor-type protein phosphotyrosine phosphatase is enriched in secretory vesicles of glucagon - and pancreatic polypeptide - secreting cells of the endocrine pancreas. Wimmer, M., Tag, C., Hofer, H.W. Histochem. Cell Biol. (1999) [Pubmed]
  22. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Dauer, W., Kholodilov, N., Vila, M., Trillat, A.C., Goodchild, R., Larsen, K.E., Staal, R., Tieu, K., Schmitz, Y., Yuan, C.A., Rocha, M., Jackson-Lewis, V., Hersch, S., Sulzer, D., Przedborski, S., Burke, R., Hen, R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  23. Transforming growth factor-betas in neurodegenerative disease. Flanders, K.C., Ren, R.F., Lippa, C.F. Prog. Neurobiol. (1998) [Pubmed]
  24. T-cell protein tyrosine phosphatase (Tcptp) is a negative regulator of colony-stimulating factor 1 signaling and macrophage differentiation. Simoncic, P.D., Bourdeau, A., Lee-Loy, A., Rohrschneider, L.R., Tremblay, M.L., Stanley, E.R., McGlade, C.J. Mol. Cell. Biol. (2006) [Pubmed]
  25. The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Simoncic, P.D., Lee-Loy, A., Barber, D.L., Tremblay, M.L., McGlade, C.J. Curr. Biol. (2002) [Pubmed]
  26. MPTP delta, a putative murine homolog of HPTP delta, is expressed in specialized regions of the brain and in the B-cell lineage. Mizuno, K., Hasegawa, K., Katagiri, T., Ogimoto, M., Ichikawa, T., Yakura, H. Mol. Cell. Biol. (1993) [Pubmed]
  27. Loss of T-Cell Protein Tyrosine Phosphatase Induces Recycling of the Platelet-derived Growth Factor (PDGF) beta-Receptor but Not the PDGF {alpha}-Receptor. Karlsson, S., Kowanetz, K., Sandin, A., Persson, C., Ostman, A., Heldin, C.H., Hellberg, C. Mol. Biol. Cell (2006) [Pubmed]
  28. Sgk1, a cell survival response in neurodegenerative diseases. Schoenebeck, B., Bader, V., Zhu, X.R., Schmitz, B., Lübbert, H., Stichel, C.C. Mol. Cell. Neurosci. (2005) [Pubmed]
  29. Inhibition of monoamine oxidase contributes to the protective effect of 7-nitroindazole against MPTP neurotoxicity. Di Monte, D.A., Royland, J.E., Anderson, A., Castagnoli, K., Castagnoli, N., Langston, J.W. J. Neurochem. (1997) [Pubmed]
  30. A novel immunophilin ligand: distinct branching effects on dopaminergic neurons in culture and neurotrophic actions after oral administration in an animal model of Parkinson's disease. Costantini, L.C., Chaturvedi, P., Armistead, D.M., McCaffrey, P.G., Deacon, T.W., Isacson, O. Neurobiol. Dis. (1998) [Pubmed]
WikiGenes - Universities