The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Sord  -  sorbitol dehydrogenase

Mus musculus

Synonyms: L-iditol 2-dehydrogenase, Sdh-1, Sdh1, Sodh-1, Sorbitol dehydrogenase
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Sord


High impact information on Sord


Chemical compound and disease context of Sord


Biological context of Sord


Anatomical context of Sord

  • Sorbitol dehydrogenase (Sord) catalyzes the interconversion of sorbitol and fructose and is functionally important both in the metabolism of dietary sorbitol and as a source of fructose in semen [1].
  • SDH was broadly distributed in these tissues but exhibited highest activities in the seminal vesicles, coagulating glands, and germinal cells of mature testes [14].
  • Changes in biochemical parameters in the testes, lactate dehydrogenase-C(4) (LDH-C(4)), and sorbitol dehydrogenase (SDH) activities, were also observed in adult treated F1 mice [15].
  • The serum copper, superoxide dismutase, and sorbitol dehydrogenase concentrations, as well as the activity of polymorphonuclear leukocytes in unseparated blood seemed most appropriate to quantify the protective capacity of Cu-thionein in the course of an oxidative stress-dependent liver injury [16].
  • The increases in mitochondrial and cytosolic calcium contents observed in the acetaminophen-intoxicated mouse liver appear to occur at the same time as the appearance of plasma membrane damage, as measured by sorbitol dehydrogenase leakage [17].

Associations of Sord with chemical compounds

  • Introducing an SDH-deficient mutation into these transgenic mice significantly normalized the GSH and malondialdehyde levels [18].
  • We describe a mechanized method for centrifugal analyzer determination of sorbitol dehydrogenase in serum, based on conversion of D-fructose to sorbitol with simultaneous oxidation of NADH, in triethanolamine buffer at pH 7.4 and 30 degrees C. The standard curve for this assay is linear to 200 U of activity per liter of serum [19].
  • In the male rat, sorbitol dehydrogenase (SDH), bilirubin, serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvate transaminase (SGPT) showed elevations of 9-, 10-. 17- and 28-fold over controls respectively, indicating that significant hepatotoxicity was induced by MP [20].
  • Whereas plasma levels of sorbitol dehydrogenase were elevated dramatically 24 hr after 400 mg/kg given as a single dose, the glutathione content of the livers was not different from controls even after repeated administration [21].
  • Apart from NMF only NEF was potently hepatotoxic as measured by the elevation of plasma activities of the enzymes sorbitol dehydrogenase and alanine and aspartate aminotransferases 24 hr after drug administration [22].

Regulatory relationships of Sord


Other interactions of Sord


Analytical, diagnostic and therapeutic context of Sord


  1. Aberrant mRNA splicing causes sorbitol dehydrogenase deficiency in C57BL/LiA mice. Lee, F.K., Chung, S.K., Chung, S.S. Genomics (1997) [Pubmed]
  2. Effects of sorbitol dehydrogenase deficiency on nerve conduction in experimental diabetic mice. Ng, T.F., Lee, F.K., Song, Z.T., Calcutt, N.A., Lee, A.Y., Chung, S.S., Chung, S.K., Ng, D.T., Lee, L.W. Diabetes (1998) [Pubmed]
  3. Redox state-dependent and sorbitol accumulation-independent diabetic albuminuria in mice with transgene-derived human aldose reductase and sorbitol dehydrogenase deficiency. Ii, S., Ohta, M., Kudo, E., Yamaoka, T., Tachikawa, T., Moritani, M., Itakura, M., Yoshimoto, K. Diabetologia (2004) [Pubmed]
  4. Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Lee, A.Y., Chung, S.K., Chung, S.S. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  5. Contributions of polyol pathway to oxidative stress in diabetic cataract. Lee, A.Y., Chung, S.S. FASEB J. (1999) [Pubmed]
  6. Isozyme phenotypes of polyoma virus tumors in mice. Fisher, S.E., Dawe, C.J., Williams, J.E., Morgan, W.D. Cancer Res. (1983) [Pubmed]
  7. Levels of expression of hexokinase, aldose reductase and sorbitol dehydrogenase genes in lens of mouse and rat. Wen, Y., Bekhor, I. Curr. Eye Res. (1993) [Pubmed]
  8. Hepatotoxicity of N-methylformamide in mice--I. Relationship to glutathione status. Pearson, P.G., Gescher, A., Harpur, E.S. Biochem. Pharmacol. (1987) [Pubmed]
  9. Evidence for the involvement of a reperfusion injury in galactosamine/endotoxin-induced hepatitis in mice. Wendel, A., Tiegs, G., Werner, C. Biochem. Pharmacol. (1987) [Pubmed]
  10. Ribose cysteine protects against acetaminophen-induced hepatic and renal toxicity. Lucas, A.M., Hennig, G., Dominick, P.K., Whiteley, H.E., Roberts, J.C., Cohen, S.D. Toxicologic pathology. (2000) [Pubmed]
  11. Selected testicular enzymes as biochemical markers for procarbazine-induced testicular toxicity. Shen, R.S., Lee, I.P. Arch. Toxicol. (1984) [Pubmed]
  12. Sorbitol dehydrogenase genetics in the mouse: a 'null' mutant in a 'European' C57BL strain. Holmes, R.S., Duley, J.A., Hilgers, J. Animal blood groups and biochemical genetics. (1982) [Pubmed]
  13. Cloning, sequencing, and determination of the sites of expression of mouse sorbitol dehydrogenase cDNA. Lee, F.K., Lee, A.Y., Lin, C.X., Chung, S.S., Chung, S.K. Eur. J. Biochem. (1995) [Pubmed]
  14. Genetic variation, cellular distribution and ontogeny of sorbitol dehydrogenase and alcohol dehydrogenase isozymes in male reproductive tissues of the mouse. Holmes, R.S., Jones, J.T., Peters, J. J. Exp. Zool. (1978) [Pubmed]
  15. Long-lasting effects of lindane on mouse spermatogenesis induced by in utero exposure. Traina, M.E., Rescia, M., Urbani, E., Mantovani, A., Macrì, C., Ricciardi, C., Stazi, A.V., Fazzi, P., Cordelli, E., Eleuteri, P., Leter, G., Spanò, M. Reprod. Toxicol. (2003) [Pubmed]
  16. Antiinflammatory reactivity of copper(I)-thionein. Miesel, R., Hartmann, H.J., Weser, U. Inflammation (1990) [Pubmed]
  17. Effect of acetaminophen hepatotoxicity on hepatic mitochondrial and microsomal calcium contents in mice. Burcham, P.C., Harman, A.W. Toxicol. Lett. (1988) [Pubmed]
  18. Contribution of polyol pathway to diabetes-induced oxidative stress. Chung, S.S., Ho, E.C., Lam, K.S., Chung, S.K. J. Am. Soc. Nephrol. (2003) [Pubmed]
  19. Kinetic determination of serum sorbitol dehydrogenase activity with a centrifugal analyzer. Dooley, J.F., Turnquist, L.J., Racich, L. Clin. Chem. (1979) [Pubmed]
  20. Examination of genotoxicity, toxicity and morphologic alterations in hepatocytes following in vivo or in vitro exposure to methapyrilene. Steinmetz, K.L., Tyson, C.K., Meierhenry, E.F., Spalding, J.W., Mirsalis, J.C. Carcinogenesis (1988) [Pubmed]
  21. An investigation of the mechanism of hepatotoxicity of the antitumour agent N-methylformamide in mice. Whitby, H., Gescher, A., Levy, L. Biochem. Pharmacol. (1984) [Pubmed]
  22. An investigation of the relationship between the hepatotoxicity and the metabolism of N-alkylformamides. Kestell, P., Threadgill, M.D., Gescher, A., Gledhill, A.P., Shaw, A.J., Farmer, P.B. J. Pharmacol. Exp. Ther. (1987) [Pubmed]
  23. Effect of fructose supplementation on sorbitol accumulation and myo-inositol metabolism in cultured neuroblastoma cells exposed to increased glucose concentrations. Yorek, M.A., Dunlap, J.A., Leeney, E.M., Stefani, M.R. J. Neurochem. (1990) [Pubmed]
  24. Linkage analyses and biochemical genetics of sorbitol dehydrogenase-1 (Sdh-1) in the mouse. Andrews, S.J., Peters, J. Biochem. Genet. (1983) [Pubmed]
  25. Oleanolic acid protects against cadmium hepatotoxicity by inducing metallothionein. Liu, Y., Kreppel, H., Liu, J., Choudhuri, S., Klaassen, C.D. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  26. Tumor necrosis factor is a terminal mediator in galactosamine/endotoxin-induced hepatitis in mice. Tiegs, G., Wolter, M., Wendel, A. Biochem. Pharmacol. (1989) [Pubmed]
  27. Differential toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in C57BL/6J mice congenic at the Ah Locus. Birnbaum, L.S., McDonald, M.M., Blair, P.C., Clark, A.M., Harris, M.W. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1990) [Pubmed]
  28. Nondenaturing two-dimensional electrophoresis enzyme profile involving activity and sequence structure of cytosol proteins from mouse liver. Shimazaki, Y., Sugawara, Y., Manabe, T. Proteomics (2004) [Pubmed]
  29. Repeated dosing with the peroxisome proliferator clofibrate decreases the toxicity of model hepatotoxic agents in male mice. Manautou, J.E., Silva, V.M., Hennig, G.E., Whiteley, H.E. Toxicology (1998) [Pubmed]
  30. Changes in serum transaminases, SDH and liver morphology after treatment with trypanocidal diamidines in mice. Steinmann, U., Sippel, H., Pesch, H.J., Estler, C.J. Toxicol. Lett. (1985) [Pubmed]
  31. Comparison of the susceptibility of wild-type and CYP2E1 knockout mice to the hepatotoxic and pneumotoxic effects of styrene and styrene oxide. Carlson, G.P. Toxicol. Lett. (2004) [Pubmed]
  32. Testicular effects of acrylonitrile in mice. Tandon, R., Saxena, D.K., Chandra, S.V., Seth, P.K., Srivastava, S.P. Toxicol. Lett. (1988) [Pubmed]
WikiGenes - Universities