The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CD7  -  CD7 molecule

Homo sapiens

Synonyms: GP40, LEU-9, T-cell antigen CD7, T-cell leukemia antigen, T-cell surface antigen Leu-9, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CD7

 

High impact information on CD7

  • Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CD5, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold [6].
  • Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion [7].
  • CD7 is preferentially expressed on naive T cells and is unique in being a potent inducer of naive T cell adhesion [7].
  • Detailed immunological analysis demonstrated that the vast majority of these cells expressed T cell-associated antigens (i.e., CD7, CD5, CD2, CD4, and to a lesser extent, CD8) [8].
  • Two-color flow cytometry revealed that among the IBM-MNCs the DCC protein was clearly expressed on the CD14+, CD13+, and factor 8+ cells, whereas it was low on the CD19+ and CD7+ cells and did not express on the CD34+, CD8+, and the glycophorin A+ cells [9].
 

Chemical compound and disease context of CD7

 

Biological context of CD7

  • A group of ALL cells whose cell surface phenotype was CD2 (SRBC receptor) negative and CD7 (T cell antigen) positive has been considered as precursor thymocyte ALL (pre-T-ALL) [15].
  • In this study, we have studied the signals required for CD7 up-regulation on human T cells [16].
  • The CD7 gp40 molecule is a member of the Ig gene superfamily and is expressed on T cell precursors before their entry into the thymus during fetal development [4].
  • Using computer analysis, we transposed the amino acid sequence of the CD7 Ig kappa-like N-terminal domain of CD7 onto the spatial coordinates of REI, a previously reported Ig kappa-molecule highly homologous (48%) to the CD7 N-terminal Ig-like region [4].
  • Neither 1.6 nM PMA, nor immobilized anti-CD5 mAb were mitogenic as a sole stimulus. mAb identifying CD4, CD7, CD11a, CD18, and major histocompatibility complex class I molecules were not comitogenic with PMA [17].
 

Anatomical context of CD7

  • Few CD34+ cells in BM (2.7%) or PB (7%) expressed the T-cell antigen CD7 [18].
  • p53 and N-ras mutations in two new leukemia cell lines established from a patient with multilineage CD7-positive acute leukemia [19].
  • Two new myeloid cell lines (K051 and K052) were established from a patient with multilineage CD7-positive acute leukemia [19].
  • Among 192 patients (26%) with T lineage ALL, 47 (6%; 24% of T lineage ALL) had lymphoblasts without sheep erythrocyte rosette formation, but with pan-T antigen CD7 on the membrane and intracellular CD3 proteins mostly in perinuclear accumulation [20].
  • The CD7 Ag is also expressed on human NK cells, but its function has not been determined [2].
 

Associations of CD7 with chemical compounds

 

Regulatory relationships of CD7

  • The CD7 Ag was found to be expressed at a significantly (p < 0.002) higher level on fresh NK cells than on IL-2-activated, NK cells [2].
  • One of them did not express the CD7 antigen but did express the CD33 antigen on the cell surface, suggesting that CD3-gamma transcription may not always be an event restricted to cells differentiating along the T-cell lineage [24].
  • Discordant expression of myeloid antigens and myeloperoxidase in a case of t(8;21) positive AML expressing CD7 [25].
  • The most interesting results were in the CALLA- group where 94% of the samples expressed the B cell antigen CD19 but 27% co-expressed CD7 [26].
  • This demonstrates a novel function for CD7 as a death trigger and identifies galectin-1/CD7 as a new biologic death signaling pair [27].
 

Other interactions of CD7

  • The 14 M2 AML cases lacking the t(8;21) commonly expressed CD2 (n = 5) or CD7 (n = 8) [28].
  • This indicates that CB either contains very low numbers of these progenitors or that the antigen density of CD7 and CD19 on CD34+ cells is below the detection limit of the flow cytometer [29].
  • Input HSCs were differentiated into T cells as evidenced by the expression of T-cell markers, such as CD7, CD1a, CD4, CD8, and CD3, and by detection of TCR excision circles [30].
  • The absence of antigen expression by epidermal but not dermal T cells, which the authors have termed antigen discordance, was most prevalent for CD5, CD7, and TCR-beta, each being discordant in 6% to 7% of MF cases or patients tested [31].
  • The vast majority of intestinal HSCs coexpressed the T cell Ag, CD7 (92% in the epithelium, 80% in the lamina propria) whereas <10% coexpressed the myeloid Ag CD33, suggesting that gut HSCs are a relatively mature population committed to the lymphoid lineage [32].
 

Analytical, diagnostic and therapeutic context of CD7

References

  1. CD7-restricted activation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. Bremer, E., ten Cate, B., Samplonius, D.F., de Leij, L.F., Helfrich, W. Blood (2006) [Pubmed]
  2. Expression and function of CD7 molecule on human natural killer cells. Rabinowich, H., Pricop, L., Herberman, R.B., Whiteside, T.L. J. Immunol. (1994) [Pubmed]
  3. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. Pace, K.E., Lee, C., Stewart, P.L., Baum, L.G. J. Immunol. (1999) [Pubmed]
  4. Characterization of the surface topography and putative tertiary structure of the human CD7 molecule. Ware, R.E., Scearce, R.M., Dietz, M.A., Starmer, C.F., Palker, T.J., Haynes, B.F. J. Immunol. (1989) [Pubmed]
  5. Expression of T/NK-cell and plasma cell antigens in nonhematopoietic epithelioid neoplasms. An immunohistochemical study of 447 cases. Chu, P.G., Arber, D.A., Weiss, L.M. Am. J. Clin. Pathol. (2003) [Pubmed]
  6. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Zarling, J.M., Moran, P.A., Haffar, O., Sias, J., Richman, D.D., Spina, C.A., Myers, D.E., Kuebelbeck, V., Ledbetter, J.A., Uckun, F.M. Nature (1990) [Pubmed]
  7. Crosslinking of the T cell-specific accessory molecules CD7 and CD28 modulates T cell adhesion. Shimizu, Y., van Seventer, G.A., Ennis, E., Newman, W., Horgan, K.J., Shaw, S. J. Exp. Med. (1992) [Pubmed]
  8. In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). Lusso, P., Markham, P.D., Tschachler, E., di Marzo Veronese, F., Salahuddin, S.Z., Ablashi, D.V., Pahwa, S., Krohn, K., Gallo, R.C. J. Exp. Med. (1988) [Pubmed]
  9. DCC protein expression in hematopoietic cell populations and its relation to leukemogenesis. Inokuchi, K., Miyake, K., Takahashi, H., Dan, K., Nomura, T. J. Clin. Invest. (1996) [Pubmed]
  10. Defective expression of T cell-associated glycoprotein in severe combined immunodeficiency. Jung, L.K., Fu, S.M., Hara, T., Kapoor, N., Good, R.A. J. Clin. Invest. (1986) [Pubmed]
  11. A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Peipp, M., Küpers, H., Saul, D., Schlierf, B., Greil, J., Zunino, S.J., Gramatzki, M., Fey, G.H. Cancer Res. (2002) [Pubmed]
  12. The application of a monoclonal antibody to CD62L on paraffin-embedded tissue samples in the assessment of the cutaneous T-cell infiltrates. Magro, C.M., Sachdeva, M.P., Crowson, A.N., Barusevicius, A., Baran, P.N., Kovatich, A.J. J. Cutan. Pathol. (2005) [Pubmed]
  13. Recent improvements in outcome for elderly patients with de novo acute myeloblastic leukemia. López, A., de la Rubia, J., Martín, G., Martínez, J., Cervera, J., Jarque, I., Sempere, A., Plumé, G., Saavedra, S., Regadera, A., Sanz, G., Gomis, F., Pérez-Sirvent, M.L., Senent, L., Jiménez, C., Sanz, M.A. Leuk. Res. (2001) [Pubmed]
  14. CD7 positive acute lymphoblastic leukemia successfully treated with high dose cytosine arabinoside and mitoxantrone: a case report. Nakajima, H., Kizaki, M., Kawai, Y., Ishida, A., Tokuhira, M., Watanabe, K., Ikeda, Y. The Keio journal of medicine. (1996) [Pubmed]
  15. Phorbol ester induces interleukin-2 receptor on the cell surface of precursor thymocyte leukemia with no rearrangement of T cell receptor beta and gamma genes. Morishima, Y., Morishita, Y., Adachi, K., Tanimoto, M., Ohno, R., Saito, H. Blood (1987) [Pubmed]
  16. Induction of T cell CD7 gene transcription by nonmitogenic ionomycin-induced transmembrane calcium flux. Ware, R.E., Hart, M.K., Haynes, B.F. J. Immunol. (1991) [Pubmed]
  17. Immobilized anti-CD5 together with prolonged activation of protein kinase C induce interleukin 2-dependent T cell growth: evidence for signal transduction through CD5. Vandenberghe, P., Ceuppens, J.L. Eur. J. Immunol. (1991) [Pubmed]
  18. Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Bender, J.G., Unverzagt, K.L., Walker, D.E., Lee, W., Van Epps, D.E., Smith, D.H., Stewart, C.C., To, L.B. Blood (1991) [Pubmed]
  19. p53 and N-ras mutations in two new leukemia cell lines established from a patient with multilineage CD7-positive acute leukemia. Abo, J., Inokuchi, K., Dan, K., Nomura, T. Blood (1993) [Pubmed]
  20. Prethymic phenotype and genotype of pre-T (CD7+/ER-)-cell leukemia and its clinical significance within adult acute lymphoblastic leukemia. Thiel, E., Kranz, B.R., Raghavachar, A., Bartram, C.R., Löffler, H., Messerer, D., Ganser, A., Ludwig, W.D., Büchner, T., Hoelzer, D. Blood (1989) [Pubmed]
  21. Human T lymphocyte differentiation antigens as target for immunotoxins or complement-mediated cytotoxicity. Preijers, F.W., De Witte, T., Rijke-Schilder, G.P., Tax, W.J., Wessels, J.M., Haanen, C., Capel, P.J. Scand. J. Immunol. (1988) [Pubmed]
  22. HIV induces modulation of functionally important cellular antigens. Wrightham, M., Schimpf, A., Pennington, T.H., Walker, F., Sewell, H.F. Clin. Exp. Immunol. (1991) [Pubmed]
  23. Molecular cloning of two CD7 (T-cell leukemia antigen) cDNAs by a COS cell expression system. Aruffo, A., Seed, B. EMBO J. (1987) [Pubmed]
  24. Molecular analysis of acute undifferentiated leukemia: two distinct subgroups at the DNA and RNA levels. Hara, J., Yumura-Yagi, K., Tawa, A., Ishihara, S., Murata, M., Terada, N., Izumi, Y., Champagne, E., Takihara, Y., Mak, T.W. Blood (1989) [Pubmed]
  25. Discordant expression of myeloid antigens and myeloperoxidase in a case of t(8;21) positive AML expressing CD7. Hirai, K., Torimoto, Y., Moriichi, K., Sato, K., Ohnishi, K., Taya, N., Kohgo, Y. Int. J. Hematol. (1999) [Pubmed]
  26. T cell receptor gene rearrangements in B-precursor acute lymphoblastic leukemia correlate with age and the stage of B cell differentiation. Nuss, R., Kitchingman, G., Cross, A., Zipf, T.F., Antoun, G.R., Bernstein, I., Behm, F., Pullen, D.J., Crist, W., Mirro, J. Leukemia (1988) [Pubmed]
  27. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. Pace, K.E., Hahn, H.P., Pang, M., Nguyen, J.T., Baum, L.G. J. Immunol. (2000) [Pubmed]
  28. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Hurwitz, C.A., Raimondi, S.C., Head, D., Krance, R., Mirro, J., Kalwinsky, D.K., Ayers, G.D., Behm, F.G. Blood (1992) [Pubmed]
  29. Phenotype analysis of hematopoietic CD34+ cell populations derived from human umbilical cord blood using flow cytometry and cDNA-polymerase chain reaction. Thoma, S.J., Lamping, C.P., Ziegler, B.L. Blood (1994) [Pubmed]
  30. Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via Notch signaling. Zhao, Y., Parkhurst, M.R., Zheng, Z., Cohen, C.J., Riley, J.P., Gattinoni, L., Restifo, N.P., Rosenberg, S.A., Morgan, R.A. Cancer Res. (2007) [Pubmed]
  31. Discordant expression of antigens between intraepidermal and intradermal T cells in mycosis fungoides. Michie, S.A., Abel, E.A., Hoppe, R.T., Warnke, R.A., Wood, G.S. Am. J. Pathol. (1990) [Pubmed]
  32. Detection and characterization of hemopoietic stem cells in the adult human small intestine. Lynch, L., O'donoghue, D., Dean, J., O'sullivan, J., O'farrelly, C., Golden-Mason, L. J. Immunol. (2006) [Pubmed]
  33. Therapy with OKT3 monoclonal antibody in refractory T cell acute lymphoblastic leukemia induces interleukin-2 responsiveness. Gramatzki, M., Burger, R., Strobel, G., Trautmann, U., Bartram, C.R., Helm, G., Horneff, G., Alsalameh, S., Jonker, M., Gebhart, E. Leukemia (1995) [Pubmed]
  34. The presence of lymphoid-associated antigens in adult acute myeloid leukemia is devoid of prognostic relevance. Lauria, F., Raspadori, D., Ventura, M.A., Rondelli, D., Testoni, N., Tosi, P., Michieli, M., Damiani, D., Motta, M.R., Tura, S. Stem Cells (1995) [Pubmed]
  35. Characterization and expression of the human T cell receptor-T3 complex by monoclonal antibody F101.01. Geisler, C., Plesner, T., Pallesen, G., Skjødt, K., Odum, N., Larsen, J.K. Scand. J. Immunol. (1988) [Pubmed]
  36. Isolation and characterization of the genomic human CD7 gene: structural similarity with the murine Thy-1 gene. Schanberg, L.E., Fleenor, D.E., Kurtzberg, J., Haynes, B.F., Kaufman, R.E. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
 
WikiGenes - Universities