The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Animal Feed

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Animal Feed


High impact information on Animal Feed


Chemical compound and disease context of Animal Feed


Biological context of Animal Feed

  • We have investigated the metal binding qualities of two biomass byproducts that are commercially available in quantity and at low cost, namely "spillage", a dried yeast and plant mixture from the production of ethanol from corn, and ground corn cobs used in animal feeds [16].
  • A case of occupational contact allergy to furazolidone, used as an animal feed additive and as an antimicrobial drug in veterinary medicine, is described [17].

Anatomical context of Animal Feed

  • Hexachlorobenzene (HCB) has been found in clearly detectable concentrations in surface waters, sediments, fish, products of animal origin, animal feed, human tissues, human milk and certain pesticide formulations [18].
  • In this study in vitro experiments with animal feed, isolated rat stomachs, as well as in vivo studies with intact rats, showed that ClO2 in drinking water (at in situ concentrations as low as 2 ppm) oxidizes iodide to its reactive elemental (radical) state, binding it to organic substances present in the GI tract [19].

Associations of Animal Feed with chemical compounds


Gene context of Animal Feed

  • Exposure to aflatoxin B1 in animal-feed production plant workers [25].
  • The cause was recognized as a prion agent transmitted in the meat and bone meal products used as animal feed, a practice that was banned in 1988 [26].
  • Supplementation with phytase is an effective way to increase the availability of phosphorus in seed-based animal feed [27].
  • A sensitive and reliable method is described for the determination of aflatoxins B1, B2, G1 and G2, ochratoxin A and zearalenone in animal feed ingredients [28].
  • Following the ban on incorporation of tetracycline in animal feeds for nutritive purposes, tetracycline resistance in S. typhimurium and S. panama strains of porcine origin dropped from about 90% in 1974 for both species, to about 34% and 1%, respectively, 1980 [29].

Analytical, diagnostic and therapeutic context of Animal Feed


  1. Effects of flavophospholipol on resistance in fecal Escherichia coli and enterococci of fattening pigs. van den Bogaard, A.E., Hazen, M., Hoyer, M., Oostenbach, P., Stobberingh, E.E. Antimicrob. Agents Chemother. (2002) [Pubmed]
  2. Ochratoxin A and zearalenone: a comparative study on genotoxic effects and cell death induced in bovine lymphocytes. Lioi, M.B., Santoro, A., Barbieri, R., Salzano, S., Ursini, M.V. Mutat. Res. (2004) [Pubmed]
  3. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Baucheron, S., Imberechts, H., Chaslus-Dancla, E., Cloeckaert, A. Microb. Drug Resist. (2002) [Pubmed]
  4. Contact dermatitis from furaltadone in animal feed. Vilaplana, J., Grimalt, F., Romaguera, C. Contact Derm. (1990) [Pubmed]
  5. Rapid bioassay for the determination of dioxins and dioxin-like PCDFs and PCBs in meat and animal feeds. Jeong, S.H., Cho, J.H., Park, J.M., Denison, M.S. Journal of analytical toxicology. (2005) [Pubmed]
  6. Lymphocyte function of Michigan dairy farmers exposed to polybrominated biphenyls. Bekesi, J.G., Holland, J.F., Anderson, H.A., Fischbein, A.S., Rom, W., Wolff, M.S., Selikoff, I.J. Science (1978) [Pubmed]
  7. Methimazole in animal feed and congenital aplasia cutis. Martínez-Frías, M.L., Cereijo, A., Rodríguez-Pinilla, E., Urioste, M. Lancet (1992) [Pubmed]
  8. Antimicrobial resistance gene delivery in animal feeds. Lu, K., Asano, R., Davies, J. Emerging Infect. Dis. (2004) [Pubmed]
  9. Increasing maize seed methionine by mRNA stability. Lai, J., Messing, J. Plant J. (2002) [Pubmed]
  10. Targeting the forgotten transglycosylases. Halliday, J., McKeveney, D., Muldoon, C., Rajaratnam, P., Meutermans, W. Biochem. Pharmacol. (2006) [Pubmed]
  11. Enumeration and identification of pediococci in powder-based products using selective media and rapid PFGE. Simpson, P.J., Fitzgerald, G.F., Stanton, C., Ross, R.P. J. Microbiol. Methods (2006) [Pubmed]
  12. Application of an Escherichia coli green fluorescent protein-based lysine biosensor under nonsterile conditions and autofluorescence background. Chalova, V., Woodward, C.L., Ricke, S.C. Lett. Appl. Microbiol. (2006) [Pubmed]
  13. Contact dermatitis to ethoxyquin in animal feeds. Van Hecke, E. Contact Derm. (1977) [Pubmed]
  14. Nutritional selenium supplements: product types, quality, and safety. Schrauzer, G.N. Journal of the American College of Nutrition. (2001) [Pubmed]
  15. The evaluation of a mupirocin-based selective medium for the enumeration of bifidobacteria from probiotic animal feed. Simpson, P.J., Fitzgerald, G.F., Stanton, C., Ross, R.P. J. Microbiol. Methods (2004) [Pubmed]
  16. Biomass byproducts for the remediation of wastewaters contaminated with toxic metals. Schneegurt, M.A., Jain, J.C., Menicucci, J.A., Brown, S.A., Kemner, K.M., Garofalo, D.F., Quallick, M.R., Neal, C.R., Kulpa, C.F. Environ. Sci. Technol. (2001) [Pubmed]
  17. Contact allergy to furazolidone. de Groot, A.C., Conemans, J.M. Contact Derm. (1990) [Pubmed]
  18. Environmental and human exposure to hexachlorobenzene in the Netherlands. Greve, P.A. IARC Sci. Publ. (1986) [Pubmed]
  19. Effects of ClO2 on the absorption and distribution of dietary iodide in the rat. Harrington, R.M., Shertzer, H.G., Bercz, J.P. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1985) [Pubmed]
  20. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Garrett, J.B., Kretz, K.A., O'Donoghue, E., Kerovuo, J., Kim, W., Barton, N.R., Hazlewood, G.P., Short, J.M., Robertson, D.E., Gray, K.A. Appl. Environ. Microbiol. (2004) [Pubmed]
  21. Incidence of zearalenol (Fusarium mycotoxin) in animal feed. Mirocha, C.J., Schauerhamer, B., Christensen, C.M., Niku-Paavola, M.L., Nummi, M. Appl. Environ. Microbiol. (1979) [Pubmed]
  22. Persistence of polybrominated biphenyls (PBB) in human post-mortem tissue. Miceli, J.N., Nolan, D.C., Marks, B., Hariharan, M. Environ. Health Perspect. (1985) [Pubmed]
  23. Clinical and laboratory investigation of allergy to genetically modified foods. Bernstein, J.A., Bernstein, I.L., Bucchini, L., Goldman, L.R., Hamilton, R.G., Lehrer, S., Rubin, C., Sampson, H.A. Environ. Health Perspect. (2003) [Pubmed]
  24. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Edwards, S.G., Pirgozliev, S.R., Hare, M.C., Jenkinson, P. Appl. Environ. Microbiol. (2001) [Pubmed]
  25. Exposure to aflatoxin B1 in animal-feed production plant workers. Autrup, J.L., Schmidt, J., Autrup, H. Environ. Health Perspect. (1993) [Pubmed]
  26. The spectrum of safety: variant Creutzfeldt-Jakob disease in the United Kingdom. Ironside, J.W. Semin. Hematol. (2003) [Pubmed]
  27. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Wyss, M., Brugger, R., Kronenberger, A., Rémy, R., Fimbel, R., Oesterhelt, G., Lehmann, M., van Loon, A.P. Appl. Environ. Microbiol. (1999) [Pubmed]
  28. Multimycotoxin detection and clean-up method for aflatoxins, ochratoxin and zearalenone in animal feed ingredients using high-performance liquid chromatography and gel permeation chromatography. Dunne, C., Meaney, M., Smyth, M., Tuinstra, L.G. J. Chromatogr. (1993) [Pubmed]
  29. Incidence of resistance to ampicillin, chloramphenicol, kanamycin, tetracycline and trimethoprim of Salmonella strains isolated in The Netherlands during 1975-1980. van Leeuwen, W.J., Voogd, C.E., Guinée, P.A., Manten, A. Antonie Van Leeuwenhoek (1982) [Pubmed]
  30. Determination of diclazuril in animal feed by liquid chromatography. De Kock, J., De Smet, M., Sneyers, R. J. Chromatogr. (1992) [Pubmed]
  31. Description and validation of an analytical method for the determination of paromomycin sulfate in medicated animal feeds. Pastore, P., Gallina, A., Magno, F. The Analyst. (2000) [Pubmed]
  32. Trace analysis of the antihistamines methapyrilene hydrochloride, pyrilamine maleate and triprolidine hydrochloride monohydrate in animal feed, human urine and wastewater by high-performance liquid chromatography and gas chromatography with nitrogen-phosphorus detection. Thompson, H.C., Holder, C.L. J. Chromatogr. (1984) [Pubmed]
  33. Determination of thyreostatics in animal feed by micellar electrokinetic chromatography. Esteve-Romero, J., Escrig-Tena, I., Simó-Alfonso, E.F., Ramis-Ramos, G. The Analyst. (1999) [Pubmed]
  34. A comparison between solid phase extraction and supercritical fluid extraction for the determination of fluconazole from animal feed. Khundker, S., Dean, J.R., Jones, P. Journal of pharmaceutical and biomedical analysis. (1995) [Pubmed]
WikiGenes - Universities