The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Flatfishes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Flatfishes

 

Psychiatry related information on Flatfishes

 

High impact information on Flatfishes

  • The corresponding values for sulfamethoxazole were 0.3 to 4 micrograms/g (sea bass), 1 to 42 micrograms/g (turbot), and 4 to 35 micrograms/g (white shrimp) [7].
  • Our results suggest that the progressive expression of calretinin in the turbot retina appears associated with some degree of neuronal differentiation [8].
  • The antibacterial activities of components of a glycoprotein nature present in the turbot skin mucus are probably responsible in part for the resistance in noninjured fish to infection [9].
  • Strains of V. anguillarum could be divided into groups, with the main group containing serotype O1 and O2 strains isolated from Atlantic salmon, rainbow trout, turbot, cod, and saithe [10].
  • As a positive control for the sediment exposure experiment, a subsample of the turbot was exposed to cadmium chloride-spiked seawater [11].
 

Chemical compound and disease context of Flatfishes

 

Biological context of Flatfishes

 

Anatomical context of Flatfishes

 

Associations of Flatfishes with chemical compounds

  • Isolation of a phosphorylcholine-containing component from the turbot tapeworm, Bothriocephalus scorpii (Müller), and its reaction with C-reactive protein [2].
  • In this work, polyclonal antibodies directed against vitelline envelope proteins from rainbow trout, brown trout and turbot were used to show that oestradiol-17 beta induces the major vitelline envelope proteins in juveniles, both males and females, from different species [24].
  • The effect of different cytokines and bacterial lipopolysaccharide (LPS) on turbot (Scophthalmus maximus) macrophage nitric oxide (NO) production has been studied [25].
  • Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units [26].
  • Dietary n-3 long-chain polyunsaturated fatty acid deprivation, tissue lipid composition, ex vivo prostaglandin production, and stress tolerance in juvenile Dover sole (Solea solea L.) [27].
 

Gene context of Flatfishes

  • When compared with their mammalian homologues, fIGF-IR-1 and fIGF-IR-2 proteins contained large insertions at their C-termini, as was observed in the corresponding region of turbot IGF-IR [17].
  • All of these characteristics led to the identification of turbot and sea bream IRFs as IRF-1 [5].
  • Pituitary growth hormone secretion in the turbot, a phylogenetically recent teleost, is regulated by a species-specific pattern of neuropeptides [28].
  • Ontogeny of IGF-1 and the classical islet hormones in the turbot, Scophthalmus maximus [29].
  • To assess the significance of MSH to biological activities, we determined the structure and evaluated the expression of POMC mRNA in barfin flounder (bf), Verasper moseri, a member of a group of teleosts, Pleuronectiformes [30].
 

Analytical, diagnostic and therapeutic context of Flatfishes

References

  1. Possible role of LTB4 in the antiviral activity of turbot (Scophthalmus maximus) leukocyte-derived supernatants against viral hemorrhagic septicemia virus (VHSV). Tafalla, C., Figueras, A., Novoa, B. Dev. Comp. Immunol. (2002) [Pubmed]
  2. Isolation of a phosphorylcholine-containing component from the turbot tapeworm, Bothriocephalus scorpii (Müller), and its reaction with C-reactive protein. Fletcher, T.C., White, A., Baldo, B.A. Parasite Immunol. (1980) [Pubmed]
  3. Immune response to a recombinant capsid protein of striped jack nervous necrosis virus (SJNNV) in turbot Scophthalmus maximus and Atlantic halibut Hippoglossus hippoglossus, and evaluation of a vaccine against SJNNV. Húsgağ, S., Grotmol, S., Hjeltnes, B.K., Rødseth, O.M., Biering, E. Dis. Aquat. Org. (2001) [Pubmed]
  4. Efficacy of furunculosis vaccines in turbot, Scophthalmus maximus (L.): evaluation of immersion, oral and injection delivery. Santos, Y., García-Marquez, S., Pereira, P.G., Pazos, F., Riaza, A., Silva, R., El Morabit, A., Ubeira, F.M. J. Fish Dis. (2005) [Pubmed]
  5. Molecular cloning and expression analysis of interferon regulatory factor-1 (IRF-1) of turbot and sea bream. Ordás, M.C., Abollo, E., Costa, M.M., Figueras, A., Novoa, B. Mol. Immunol. (2006) [Pubmed]
  6. Daily locomotor activity and melatonin rhythms in Senegal sole (Solea senegalensis). Bayarri, M.J., Muñoz-Cueto, J.A., López-Olmeda, J.F., Vera, L.M., Rol de Lama, M.A., Madrid, J.A., Sánchez-Vázquez, F.J. Physiol. Behav. (2004) [Pubmed]
  7. Accumulation of trimethoprim, sulfamethoxazole, and N-acetylsulfamethoxazole in fish and shrimp fed medicated Artemia franciscana. Chair, M., Nelis, H.J., Leger, P., Sorgeloos, P., de Leenheer, A.P. Antimicrob. Agents Chemother. (1996) [Pubmed]
  8. Immunochemical localization of calretinin in the retina of the turbot (Psetta maxima) during development. Doldan, M.J., Prego, B., de Miguel Villegas, E. J. Comp. Neurol. (1999) [Pubmed]
  9. Host range susceptibility of Enterococcus sp. strains isolated from diseased turbot: possible routes of infection. Romalde, J.L., Magariños, B., Nuñez, S., Barja, J.L., Toranzo, A.E. Appl. Environ. Microbiol. (1996) [Pubmed]
  10. Classification of fish-pathogenic vibrios based on comparative 16S rRNA analysis. Wiik, R., Stackebrandt, E., Valle, O., Daae, F.L., Rødseth, O.M., Andersen, K. Int. J. Syst. Bacteriol. (1995) [Pubmed]
  11. Genotoxicity of field-collected inter-tidal sediments from Cork Harbor, Ireland, to juvenile turbot (Scophthalmus maximus L.) as measured by the Comet assay. Kilemade, M.F., Hartl, M.G., Sheehan, D., Mothersill, C., Van Pelt, F.N., O'Halloran, J., O'Brien, N.M. Environ. Mol. Mutagen. (2004) [Pubmed]
  12. A study of the susceptibility of Atlantic halibut, Hippoglossus hippoglossus (L.), to viral haemorrhagic septicaemia virus isolated from turbot, Scophthalmus maximus (L.). Bowden, T.J. J. Fish Dis. (2003) [Pubmed]
  13. Acute toxicity of fluorescein to turbot (Scophthalmus maximus). Pouliquen, H., Algoet, M., Buchet, V., Le Bris, H. Veterinary and human toxicology. (1995) [Pubmed]
  14. Toxicity and elevation of 7-ethoxyresorufin O-deethylase activity in turbot (Scophthalmus maximus L.) sarvae exposed to contaminated sea surface microlayer. Peters, L.D., O'Hara, S.C., Cleary, J., Livingstone, D.R. Bulletin of environmental contamination and toxicology. (2001) [Pubmed]
  15. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Nielsen, E.E., Nielsen, P.H., Meldrup, D., Hansen, M.M. Mol. Ecol. (2004) [Pubmed]
  16. Speciation of cestoda. Evidence for two sibling species in the complex Bothrimonus nylandicus (Schneider 1902) (Cestoda: Cyathocephalidea). Renaud, F., Gabrion, C. Parasitology (1988) [Pubmed]
  17. Molecular cloning, identification and characterization of four distinct receptor subtypes for insulin and IGF-I in Japanese flounder, Paralichthys olivaceus. Nakao, N., Tanaka, M., Higashimoto, Y., Nakashima, K. J. Endocrinol. (2002) [Pubmed]
  18. Sex-dependent synaptic behaviour in triploid turbot, Scophthalmus maximus (Pisces, Scophthalmidae). Cuñado, N., Terrones, J., Sánchez, L., Martínez, P., Santos, J.L. Heredity (2002) [Pubmed]
  19. Characterization of hepatic flavin monooxygenase from the marine teleost turbot (Scophthalmus maximus L.). Peters, L.D., Livingstone, D.R., Shenin-Johnson, S., Hines, R.N., Schlenk, D. Xenobiotica (1995) [Pubmed]
  20. Cysteine proteinase activities in the fish pathogen Philasterides dicentrarchi (Ciliophora: Scuticociliatida). Paramá, A., Iglesias, R., Alvarez, M.F., Leiro, J., Ubeira, F.M., Sanmartín, M.L. Parasitology (2004) [Pubmed]
  21. Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Borelli, G., Mayer-Gostan, N., Merle, P.L., De Pontual, H., Boeuf, G., Allemand, D., Payan, P. Calcif. Tissue Int. (2003) [Pubmed]
  22. NADPH diaphorase activity is asymmetrically distributed in the optic tectum during the period of eye migration in turbots. Jansen, J.K., Enger, P.S. Acta Physiol. Scand. (1996) [Pubmed]
  23. Production of eicosanoids derived from 20:4n-6 and 20:5n-3 in primary cultures of turbot (Scophthalmus maximus) brain astrocytes in response to platelet activating factor, substance P and interleukin-1 beta. Tocher, D.R., Bell, J.G., Sargent, J.R. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (1996) [Pubmed]
  24. Oestradiol-17 beta induces the major vitelline envelope proteins in both sexes in teleosts. Hyllner, S.J., Oppen-Berntsen, D.O., Helvik, J.V., Walther, B.T., Haux, C. J. Endocrinol. (1991) [Pubmed]
  25. Requirements for nitric oxide production by turbot (Scophthalmus maximus) head kidney macrophages. Tafalla, C., Novoa, B. Dev. Comp. Immunol. (2000) [Pubmed]
  26. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Hjelm, M., Bergh, O., Riaza, A., Nielsen, J., Melchiorsen, J., Jensen, S., Duncan, H., Ahrens, P., Birkbeck, H., Gram, L. Syst. Appl. Microbiol. (2004) [Pubmed]
  27. Dietary n-3 long-chain polyunsaturated fatty acid deprivation, tissue lipid composition, ex vivo prostaglandin production, and stress tolerance in juvenile Dover sole (Solea solea L.). Logue, J.A., Howell, B.R., Bell, J.G., Cossins, A.R. Lipids (2000) [Pubmed]
  28. Pituitary growth hormone secretion in the turbot, a phylogenetically recent teleost, is regulated by a species-specific pattern of neuropeptides. Rousseau, K., Le Belle, N., Pichavant, K., Marchelidon, J., Chow, B.K., Boeuf, G., Dufour, S. Neuroendocrinology (2001) [Pubmed]
  29. Ontogeny of IGF-1 and the classical islet hormones in the turbot, Scophthalmus maximus. Berwert, L., Segner, H., Reinecke, M. Peptides (1995) [Pubmed]
  30. Nucleotide sequence and expression of three subtypes of proopiomelanocortin mRNA in barfin flounder. Takahashi, A., Amano, M., Itoh, T., Yasuda, A., Yamanome, T., Amemiya, Y., Sasaki, K., Sakai, M., Yamamori, K., Kawauchi, H. Gen. Comp. Endocrinol. (2005) [Pubmed]
  31. Molecular cloning and developmental expression patterns of thyroid hormone receptors and T3 target genes in the turbot (Scophtalmus maximus) during post-embryonic development. Marchand, O., Duffraisse, M., Triqueneaux, G., Safi, R., Laudet, V. Gen. Comp. Endocrinol. (2004) [Pubmed]
  32. Non-isotopic detection of Tetramicra brevifilum (Microspora) DNA in turbot tissues. Leiro, J., Iglesias, R., Ubeira, F.M., Sanmartín, M.L. J. Parasitol. (2001) [Pubmed]
  33. Polymerase chain reaction-restriction fragment length polymorphism analysis of a short fragment of the cytochrome b gene for identification of flatfish species. Céspedes, A., García, T., Carrera, E., González, I., Sanz, B., Hernández, P.E., Martín, R. J. Food Prot. (1998) [Pubmed]
 
WikiGenes - Universities