The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Leydig Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Leydig Cells


High impact information on Leydig Cells

  • This degenerative phenotype appears to result from a failure of the tropic support that is normally provided by Sertoli cells of the seminiferous tubules, whose function depends on testosterone and additional factors produced by Leydig cells [6].
  • Luteinizing hormone stimulates testicular Leydig cells to produce testosterone by binding to a receptor that activates the G protein Gs and adenylyl cyclase [7].
  • The Leydig cells then secrete androgen which stimulates the development of the male reproductive tract, and the Sertoli cells secrete Mullerian inhibitory substance which inhibits the development of the female reproductive tract [8].
  • As injected LHRH agonists cause impairment of gonadal function and directly inhibit FSH-induced changes in Leydig cell function through specific membrane receptors, this 'LHRH-like' factor has all the correct credentials for the postulated messenger between the Sertoli and Leydig cells [9].
  • A further intriguing finding is the striking similarity between the direct, inhibitory effects of LHRH and LH/HCG on the gonads; for example, both treatments reduce LH receptor numbers and the steroidogenic responsiveness of rat Leydig cells [10].

Chemical compound and disease context of Leydig Cells


Biological context of Leydig Cells


Anatomical context of Leydig Cells


Associations of Leydig Cells with chemical compounds


Gene context of Leydig Cells

  • Analysis of Dhh(-/-) XY gonads revealed that differentiation of fetal Leydig cells was severely defective [28].
  • In this study, we investigated the effect of Dax1 disruption on the expression profile of various steroidogenic enzyme genes in Leydig cells isolated from Dax1-deficient male mice [29].
  • Tumor necrosis factor alpha (TNF-alpha) has been demonstrated to inhibit steroidogenesis in Leydig cells at the transcriptional level of steroidogenic enzymes [30].
  • The expression of Vanin-1 was abolished in Leydig cells of a mouse mutant lacking SF-1 in that cell type [31].
  • In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues [32].

Analytical, diagnostic and therapeutic context of Leydig Cells


  1. Phthalate-induced Leydig cell hyperplasia is associated with multiple endocrine disturbances. Akingbemi, B.T., Ge, R., Klinefelter, G.R., Zirkin, B.R., Hardy, M.P. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18(Ink4c) and p19(Ink4d). Zindy, F., den Besten, W., Chen, B., Rehg, J.E., Latres, E., Barbacid, M., Pollard, J.W., Sherr, C.J., Cohen, P.E., Roussel, M.F. Mol. Cell. Biol. (2001) [Pubmed]
  3. Corticotropin-releasing factor: an antireproductive hormone of the testis. Dufau, M.L., Tinajero, J.C., Fabbri, A. FASEB J. (1993) [Pubmed]
  4. Testosterone-secreting adrenal adenoma containing crystalloids characteristic of Leydig cells. Vasiloff, J., Chideckel, E.W., Boyd, C.B., Foshag, L.J. Am. J. Med. (1985) [Pubmed]
  5. Human Leydig cells are productively infected by some HIV-2 and SIV strains but not by HIV-1. Willey, S., Roulet, V., Reeves, J.D., Kergadallan, M.L., Thomas, E., McKnight, A., Jégou, B., Dejucq-Rainsford, N. AIDS (2003) [Pubmed]
  6. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Lu, Q., Gore, M., Zhang, Q., Camenisch, T., Boast, S., Casagranda, F., Lai, C., Skinner, M.K., Klein, R., Matsushima, G.K., Earp, H.S., Goff, S.P., Lemke, G. Nature (1999) [Pubmed]
  7. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Iiri, T., Herzmark, P., Nakamoto, J.M., van Dop, C., Bourne, H.R. Nature (1994) [Pubmed]
  8. Primary genetic control of somatic sexual differentiation in a mammal. O, W.S., Short, R.V., Renfree, M.B., Shaw, G. Nature (1988) [Pubmed]
  9. Sertoli-Leydig cell communication via an LHRH-like factor. Sharpe, R.M., Fraser, H.M., Cooper, I., Rommerts, F.F. Nature (1981) [Pubmed]
  10. HCG stimulation of testicular LHRH-like activity. Sharpe, R.M., Fraser, H.M. Nature (1980) [Pubmed]
  11. Identification and purification of a human Sertoli cell-secreted protein (hSCSP-80) stimulating Leydig cell steroid biosynthesis. Papadopoulos, V. J. Clin. Endocrinol. Metab. (1991) [Pubmed]
  12. Androgen and estrogen production in elderly men with gynecomastia and testicular atrophy after mumps orchitis. Aiman, J., Brenner, P.F., MacDonald, P.C. J. Clin. Endocrinol. Metab. (1980) [Pubmed]
  13. Pubertal and adult Leydig cell function in Mullerian inhibiting substance-deficient mice. Wu, X., Arumugam, R., Baker, S.P., Lee, M.M. Endocrinology (2005) [Pubmed]
  14. Inhibition of testosterone production by rat Leydig cells with ethanol and acetaldehyde: prevention of ethanol toxicity with 4-methylpyrazole. Santucci, L., Graham, T.J., Van Thiel, D.H. Alcohol. Clin. Exp. Res. (1983) [Pubmed]
  15. The lutropin/choriogonadotropin receptor, a 2002 perspective. Ascoli, M., Fanelli, F., Segaloff, D.L. Endocr. Rev. (2002) [Pubmed]
  16. Receptors for anti-müllerian hormone on Leydig cells are responsible for its effects on steroidogenesis and cell differentiation. Racine, C., Rey, R., Forest, M.G., Louis, F., Ferré, A., Huhtaniemi, I., Josso, N., di Clemente, N. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  17. Long-term suppression of Leydig cell steroidogenesis prevents Leydig cell aging. Chen, H., Zirkin, B.R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  18. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., Benahmed, M., Louisot, P., Lunardi, J. J. Biol. Chem. (2002) [Pubmed]
  19. Autoradiographic evidence for a calcitonin receptor on testicular Leydig cells. Chausmer, A.B., Stevens, M.D., Severn, C. Science (1982) [Pubmed]
  20. Identification of a stimulator of steroid hormone synthesis isolated from testis. Boujrad, N., Ogwuegbu, S.O., Garnier, M., Lee, C.H., Martin, B.M., Papadopoulos, V. Science (1995) [Pubmed]
  21. Lack of influence of hypophysectomy on estrogen-induced DNA synthesis in Leydig cells of BALB/c mice. Huseby, R.A., Samuels, L.T. J. Natl. Cancer Inst. (1977) [Pubmed]
  22. Progenitor cells of the testosterone-producing Leydig cells revealed. Davidoff, M.S., Middendorff, R., Enikolopov, G., Riethmacher, D., Holstein, A.F., Müller, D. J. Cell Biol. (2004) [Pubmed]
  23. Estrogen-dependent Leydig cell protein recognized by monoclonal antibody to MCF-7 cell line. Ciocca, D.R., Dufau, M.L. Science (1984) [Pubmed]
  24. Structural and functional factors related to testicular neoplasia in feminized rats. Chung, K.W., Allison, J.E., Stanley, A.J. J. Natl. Cancer Inst. (1980) [Pubmed]
  25. Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. Ozawa, N., Goda, N., Makino, N., Yamaguchi, T., Yoshimura, Y., Suematsu, M. J. Clin. Invest. (2002) [Pubmed]
  26. Establishment of gonadotropin-responsive murine leydig tumor cell line. Rebois, R.V. J. Cell Biol. (1982) [Pubmed]
  27. Construction of a Leydig cell line synthesizing testosterone under gonadotropin stimulation: a complex endocrine function immortalized by cell hybridization. Finaz, C., Lefèvre, A., Dampfhoffer, D. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  28. Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Yao, H.H., Whoriskey, W., Capel, B. Genes Dev. (2002) [Pubmed]
  29. Aromatase (Cyp19) expression is up-regulated by targeted disruption of Dax1. Wang, Z.J., Jeffs, B., Ito, M., Achermann, J.C., Yu, R.N., Hales, D.B., Jameson, J.L. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  30. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Hong, C.Y., Park, J.H., Ahn, R.S., Im, S.Y., Choi, H.S., Soh, J., Mellon, S.H., Lee, K. Mol. Cell. Biol. (2004) [Pubmed]
  31. The transcription factors steroidogenic factor-1 and SOX9 regulate expression of Vanin-1 during mouse testis development. Wilson, M.J., Jeyasuria, P., Parker, K.L., Koopman, P. J. Biol. Chem. (2005) [Pubmed]
  32. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development. Blavier, L., DeClerck, Y.A. Mol. Biol. Cell (1997) [Pubmed]
  33. Characterization and localization of proopiomelanocortin messenger RNA in the adult rat testis. Pintar, J.E., Schachter, B.S., Herman, A.B., Durgerian, S., Krieger, D.T. Science (1984) [Pubmed]
  34. A switch in the cellular localization of macrophage migration inhibitory factor in the rat testis after ethane dimethane sulfonate treatment. Meinhardt, A., Bacher, M., O'Bryan, M.K., McFarlane, J.R., Mallidis, C., Lehmann, C., Metz, C.N., de Kretser, D.M., Bucala, R., Hedger, M.P. J. Cell. Sci. (1999) [Pubmed]
  35. Insulin-like growth factor-binding protein-2: the effect of human chorionic gonadotropin on its gene regulation and protein secretion and its biological effects in rat Leydig cells. Wang, D., Nagpal, M.L., Lin, T., Shimasaki, S., Ling, N. Mol. Endocrinol. (1994) [Pubmed]
WikiGenes - Universities