The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Hypoxia, Brain

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hypoxia, Brain


Psychiatry related information on Hypoxia, Brain


High impact information on Hypoxia, Brain

  • The release of glutamate during brain anoxia or ischaemia triggers the death of neurons, causing mental or physical handicap [8].
  • This stoichiometry predicts a minimum [Glu]o of 0.6 microM normally (tonically activating presynaptic autoreceptors and post-synaptic NMDA receptors), and 370 microM during brain anoxia (high enough to kill neurons) [9].
  • This will facilitate a rise in the extracellular glutamate concentration to neurotoxic levels and contribute to the neuronal death occurring in brain anoxia and ischaemia [10].
  • ODC activity and polyamine concentrations appear to be useful enzymatic markers for fetal brain hypoxia [11].
  • Prion protein accumulation and neuroprotection in hypoxic brain damage [12].

Chemical compound and disease context of Hypoxia, Brain


Biological context of Hypoxia, Brain


Anatomical context of Hypoxia, Brain


Gene context of Hypoxia, Brain

  • These data demonstrate the activation of the proangiogenic VEGF signaling cascade in patients with CM, probably reflecting compensatory mechanisms of general and focal brain hypoxia observed in these patients [28].
  • These observations suggest that the elevation of serum S100B may mainly be caused by leakage following massive brain damage due to injury and cerebral hypoxia/ischemia, and in part by systemic hypoxic/traumatic tissue damage, depending on the survival time [29].
  • Previous studies have demonstrated that brain hypoxia and ischaemia lead to the production of proinflammatory cytokines, including tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) and IL-6 [30].
  • In previous studies, we have shown that cerebral hypoxia results in increased activation of MAPK-1 and MAPK-3 [31].
  • Protection of striatal neurons by joint blockade of D1 and D2 receptor subtypes in an in vitro model of cerebral hypoxia [32].

Analytical, diagnostic and therapeutic context of Hypoxia, Brain


  1. Myoclonus: analysis of monoamine, GABA, and other systems. Snodgrass, S.R. FASEB J. (1990) [Pubmed]
  2. Startle epilepsy: a clinical study. Sáenz-Lope, E., Herranz, F.J., Masdeu, J.C. Ann. Neurol. (1984) [Pubmed]
  3. Potassium channel activators protect the N-methyl-D-aspartate-induced cerebral vascular dilation after combined hypoxia and ischemia in piglets. Veltkamp, R., Domoki, F., Bari, F., Busija, D.W. Stroke (1998) [Pubmed]
  4. Oxygen deprivation produces delayed inhibition of long-term potentiation by activation of NMDA receptors and nitric oxide synthase. Izumi, Y., Katsuki, H., Benz, A.M., Zorumski, C.F. J. Cereb. Blood Flow Metab. (1998) [Pubmed]
  5. Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Rosén, H., Rosengren, L., Herlitz, J., Blomstrand, C. Stroke (1998) [Pubmed]
  6. Electrographic and clinical effects of intracarotid sodium amobarbital on bilateral myoclonic status epilepticus. McCutchen, C.B., Vignaendra, V., Chatrian, G.E. Neurology (1977) [Pubmed]
  7. Levodopa and bromocriptine in hypoxic brain injury. Debette, S., Kozlowski, O., Steinling, M., Rousseaux, M. J. Neurol. (2002) [Pubmed]
  8. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Rossi, D.J., Oshima, T., Attwell, D. Nature (2000) [Pubmed]
  9. The glial cell glutamate uptake carrier countertransports pH-changing anions. Bouvier, M., Szatkowski, M., Amato, A., Attwell, D. Nature (1992) [Pubmed]
  10. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Barbour, B., Brew, H., Attwell, D. Nature (1988) [Pubmed]
  11. Acute hypoxia increases ornithine decarboxylase activity and polyamine concentrations in fetal rat brain. Longo, L.D., Packianathan, S., McQueary, J.A., Stagg, R.B., Byus, C.V., Cain, C.D. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  12. Prion protein accumulation and neuroprotection in hypoxic brain damage. McLennan, N.F., Brennan, P.M., McNeill, A., Davies, I., Fotheringham, A., Rennison, K.A., Ritchie, D., Brannan, F., Head, M.W., Ironside, J.W., Williams, A., Bell, J.E. Am. J. Pathol. (2004) [Pubmed]
  13. Potentiation of NMDA receptor currents by arachidonic acid. Miller, B., Sarantis, M., Traynelis, S.F., Attwell, D. Nature (1992) [Pubmed]
  14. Acute hypoxia-induced alterations of calbindin-D28k immunoreactivity in cerebellar Purkinje cells of the guinea pig fetus at term. Katsetos, C.D., Spandou, E., Legido, A., Taylor, M.L., Zanelli, S.A., de Chadarevian, J.P., Christakos, S., Mishra, O.P., Delivoria-Papadopoulos, M. J. Neuropathol. Exp. Neurol. (2001) [Pubmed]
  15. Endogenous angiotensin II inhibits production of cerebrospinal fluid during posthypoxemic reoxygenation in the rabbit. Maktabi, M.A., Faraci, F.M. Stroke (1994) [Pubmed]
  16. Computerized tomographic correlate of carbon monoxide poisoning. Nardizzi, L.R. Arch. Neurol. (1979) [Pubmed]
  17. Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. Trincavelli, M.L., Marroni, M., Tuscano, D., Ceruti, S., Mazzola, A., Mitro, N., Abbracchio, M.P., Martini, C. J. Neurochem. (2004) [Pubmed]
  18. Epidemiologic features of infantile spasms in Slovenia. Primec, Z.R., Kopac, S., Neubauer, D. Epilepsia (2002) [Pubmed]
  19. Neuroprotective effect of phenytoin against in utero hypoxic brain injury in fetal guinea pigs. Lampley, E.C., Mishra, O.P., Graham, E., Delivoria-Papadopoulos, M. Neurosci. Lett. (1995) [Pubmed]
  20. PET studies of [18F]methyl-MK-801, a potential NMDA receptor complex radioligand. Blin, J., Denis, A., Yamaguchi, T., Crouzel, C., MacKenzie, E.T., Baron, J.C. Neurosci. Lett. (1991) [Pubmed]
  21. Regional development of glutamate-N-methyl-D-aspartate receptor sites in asphyxiated newborn infants. Andersen, D.L., Tannenberg, A.E., Burke, C.J., Dodd, P.R. J. Child Neurol. (1998) [Pubmed]
  22. Neonatal brain protection and deep hypothermic circulatory arrest: pathophysiology of ischemic neuronal injury and protective strategies. Amir, G., Ramamoorthy, C., Riemer, R.K., Reddy, V.M., Hanley, F.L. Ann. Thorac. Surg. (2005) [Pubmed]
  23. The release and uptake of excitatory amino acids. Nicholls, D., Attwell, D. Trends Pharmacol. Sci. (1990) [Pubmed]
  24. Increased brain capillaries in chronic hypoxia. Boero, J.A., Ascher, J., Arregui, A., Rovainen, C., Woolsey, T.A. J. Appl. Physiol. (1999) [Pubmed]
  25. Role of brain lactic acidosis in hypoxic depression of respiration. Neubauer, J.A., Simone, A., Edelman, N.H. J. Appl. Physiol. (1988) [Pubmed]
  26. Amino acids and glucose in human cerebrospinal fluid after acute ischaemic brain damage. Kärkelä, J., Marnela, K.M., Odink, J., Koivula, T., Kaukinen, S. Resuscitation. (1992) [Pubmed]
  27. Biochemical and histochemical studies of the effects of cerebral metabolism-improving drugs on NADPH diaphorase activity in mouse brain. Tsuruo, Y., Ishimura, K., Tamura, M., Kagawa, S., Morita, K. Jpn. J. Pharmacol. (1994) [Pubmed]
  28. Angiogenic proteins in brains of patients who died with cerebral malaria. Deininger, M.H., Winkler, S., Kremsner, P.G., Meyermann, R., Schluesener, H.J. J. Neuroimmunol. (2003) [Pubmed]
  29. Postmortem serum protein S100B levels with regard to the cause of death involving brain damage in medicolegal autopsy cases. Li, D.R., Zhu, B.L., Ishikawa, T., Zhao, D., Michiue, T., Maeda, H. Legal medicine (Tokyo, Japan) (2006) [Pubmed]
  30. NF-kappaB activation in peripheral blood mononuclear cells in neonatal asphyxia. Hasegawa, K., Ichiyama, T., Isumi, H., Nakata, M., Sase, M., Furukawa, S. Clin. Exp. Immunol. (2003) [Pubmed]
  31. Effect of hypoxia on the expression and activity of mitogen-activated protein (MAP) kinase-phosphatase-1 (MKP-1) and MKP-3 in neuronal nuclei of newborn piglets: the role of nitric oxide. Mishra, O.P., Delivoria-Papadopoulos, M. Neuroscience (2004) [Pubmed]
  32. Protection of striatal neurons by joint blockade of D1 and D2 receptor subtypes in an in vitro model of cerebral hypoxia. Davis, S., Brotchie, J., Davies, I. Exp. Neurol. (2002) [Pubmed]
  33. Diffusion MRI in three types of anoxic encephalopathy. Singhal, A.B., Topcuoglu, M.A., Koroshetz, W.J. J. Neurol. Sci. (2002) [Pubmed]
  34. Hypothermia and etomidate. Electroencephalographic aspects. Massaut, J., Dubois-Primo, J., d'Hollander, A. Acta anaesthesiologica Belgica. (1980) [Pubmed]
  35. Metabolic aspects of acute cerebral hypoxia during extracorporeal circulation and their modification induced by acetyl-carnitine treatment. Corbucci, G.G., Menichetti, A., Cogliatti, A., Nicoli, P., Arduini, A., Damonti, W., Marchionni, A., Calvani, M. International journal of clinical pharmacology research. (1992) [Pubmed]
  36. Central anticholinergic syndrome (CAS) in anesthesia and intensive care. Schneck, H.J., Rupreht, J. Acta anaesthesiologica Belgica. (1989) [Pubmed]
WikiGenes - Universities