The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Vitreous Body

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Vitreous Body

 

High impact information on Vitreous Body

  • A majority of the RARbeta2 single null mutants also exhibit this latter defect, thus demonstrating that the RARbeta2 isoform plays a unique role in the formation of the definitive vitreous body [6].
  • Inositol 1,4,5-trisphosphate-independent Ca(2+) mobilization triggered by a lipid factor isolated from vitreous body [7].
  • However, the vessels traversed the ILM and penetrated the vitreous body less frequently than in wild-type retinas (31-55% in Vim(-/-), 66-79% in GFAP(-/-) Vim(-/-)) [8].
  • X-linked Familial Exudative Vitreoretinopathy (XLFEVR) is a hereditary eye disorder that affects both the retina and the vitreous body [9].
  • Vitreous humor, the presumptive source of differentiation-promoting activity in vivo, contains a factor capable of diffusing out of the vitreous body and inducing delta-crystallin and CP49 expression in chick lens cultures [10].
 

Chemical compound and disease context of Vitreous Body

 

Anatomical context of Vitreous Body

 

Associations of Vitreous Body with chemical compounds

  • Monoclonal antibody 9BA12 recognizes collagen type IX proteoglycan from vitreous body and an unidentified chondroitin sulfate proteoglycan in retina and brain, herein referred to as 9BA12 CSPG [15].
  • The calculations are performed by relating the time course of the free--not protein bound--fluorescein concentration in the bloodstream with the fluorescein concentration profile in the vitreous body [20].
  • Lipid factor (bVLF) from bovine vitreous body evokes in EGFR-T17 cells a Ca2+-dependent K+ current associated with inositol 1,4,5-trisphosphate-independent Ca2+ mobilization [21].
  • Nickel subsulfide, alpha Ni3S2, was administered to albino Fischer rats by a single injection into the vitreous body of the right eye (0.5 mg alpha Ni3S2/rat, suspended in 20 microliter of NaCl vehicle) [22].
  • Finally, we found that DOPAC diffused freely into and out of isolated vitreous bodies and we found the vitreous to be metabolically inert with respect to DOPAC, supporting the idea that vitreal levels of DOPAC are consequential to the retinal metabolism of dopamine [23].
 

Gene context of Vitreous Body

 

Analytical, diagnostic and therapeutic context of Vitreous Body

References

  1. Modifications of transthyretin in amyloid fibrils: analysis of amyloid from homozygous and heterozygous individuals with the Met30 mutation. Thylén, C., Wahlqvist, J., Haettner, E., Sandgren, O., Holmgren, G., Lundgren, E. EMBO J. (1993) [Pubmed]
  2. Visualization of cell death in vivo during murine endotoxin-induced uveitis. Yang, P., Smith, J.R., Damodar, K.S., Planck, S.R., Rosenbaum, J.T. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  3. Pharmacokinetics of intravitreal injection. Assessment of a gentamicin model by ocular dialysis. Ben-Nun, J., Joyce, D.A., Cooper, R.L., Cringle, S.J., Constable, I.J. Invest. Ophthalmol. Vis. Sci. (1989) [Pubmed]
  4. The antioxidant cocktail, effective microorganism X (EM-X), protects retinal neurons in rats against N-methyl-D-aspartate excitotoxicity in vivo. Aruoma, O.I., Moncaster, J.A., Walsh, D.T., Gentleman, S.M., Ke, B., Liang, Y.F., Higa, T., Jen, L.S. Free Radic. Res. (2003) [Pubmed]
  5. Effects of insulin-induced acute hypoglycemia and normoglycemic hyperinsulinemia on the retinal uptake and ocular metabolism of glucose in rabbits. Romanelli, L., Amico, M.C., Mattioli, F., Memoli, A., Savini, G., Muller, A. Metab. Clin. Exp. (2004) [Pubmed]
  6. Retinal dysplasia and degeneration in RARbeta2/RARgamma2 compound mutant mice. Grondona, J.M., Kastner, P., Gansmuller, A., Décimo, D., Chambon, P., Mark, M. Development (1996) [Pubmed]
  7. Inositol 1,4,5-trisphosphate-independent Ca(2+) mobilization triggered by a lipid factor isolated from vitreous body. Camiña, J.P., Casabiell, X., Casanueva, F.F. J. Biol. Chem. (1999) [Pubmed]
  8. Under stress, the absence of intermediate filaments from Müller cells in the retina has structural and functional consequences. Lundkvist, A., Reichenbach, A., Betsholtz, C., Carmeliet, P., Wolburg, H., Pekny, M. J. Cell. Sci. (2004) [Pubmed]
  9. Identification of novel missense mutations in the Norrie disease gene associated with one X-linked and four sporadic cases of familial exudative vitreoretinopathy. Shastry, B.S., Hejtmancik, J.F., Trese, M.T. Hum. Mutat. (1997) [Pubmed]
  10. FGF signaling in chick lens development. Le, A.C., Musil, L.S. Dev. Biol. (2001) [Pubmed]
  11. Characterization of two highly amyloidogenic mutants of transthyretin. Goldsteins, G., Andersson, K., Olofsson, A., Dacklin, I., Edvinsson, A., Baranov, V., Sandgren, O., Thylén, C., Hammarstrom, S., Lundgren, E. Biochemistry (1997) [Pubmed]
  12. Study on vitreous fibrosis induced by blood cells. Katakami, C. Nippon Ganka Gakkai Zasshi (1990) [Pubmed]
  13. Mechanisms governing neuronal degeneration and axonal regeneration in the mature retinofugal system. Thanos, S., Thiel, H.J. J. Cell Sci. Suppl. (1991) [Pubmed]
  14. Retinal toxicity of intravitreal lazaroid (21-aminosteroid U75412E). Cruz, S.A., Karaçorlu, M., Peyman, G.A. International ophthalmology. (1992) [Pubmed]
  15. Two chondroitin sulfate proteoglycans differentially expressed in the developing chick visual system. Ring, C., Lemmon, V., Halfter, W. Dev. Biol. (1995) [Pubmed]
  16. Visualizing the vitreous body in the anterior chamber using 11-deoxycortisol after posterior capsule rupture in an animal model. Kaji, Y., Hiraoka, T., Okamoto, F., Sato, M., Hu, B., Yamane, N., Oshika, T. Ophthalmology (2004) [Pubmed]
  17. Effect of vitamin E on glutathione content in red blood cells, aqueous humor and lens of humans and other species. Costagliola, C., Iuliano, G., Menzione, M., Rinaldi, E., Vito, P., Auricchio, G. Exp. Eye Res. (1986) [Pubmed]
  18. Alterations in neurofilament light in optic nerve in rat kainate and monkey ocular hypertension models. Taniguchi, T., Shimazawa, M., Hara, H. Brain Res. (2004) [Pubmed]
  19. In situ ocular absorption of tilisolol through ocular membranes in albino rabbits. Sasaki, H., Ichikawa, M., Kawakami, S., Yamamura, K., Nishida, K., Nakamura, J. Journal of pharmaceutical sciences. (1996) [Pubmed]
  20. Quantitative vitreous fluorophotometry applying a mathematical model of the eye. Lund-Andersen, H., Krogsaa, B., la Cour, M., Larsen, J. Invest. Ophthalmol. Vis. Sci. (1985) [Pubmed]
  21. Lipid factor (bVLF) from bovine vitreous body evokes in EGFR-T17 cells a Ca2+-dependent K+ current associated with inositol 1,4,5-trisphosphate-independent Ca2+ mobilization. Camiña, J.P., Diaz-Rodriguez, E., Harks, E.G., Theuvenet, A.P., Ypey, D.L., Casanueva, F.F. J. Cell. Physiol. (2003) [Pubmed]
  22. Induction of ocular neoplasms in Fischer rats by intraocular injection of nickel subsulfide. Albert, D.M., Gonder, J.R., Papale, J., Craft, J.L., Dohlman, H.G., Reid, M.C., Sunderman, F.W. Invest. Ophthalmol. Vis. Sci. (1982) [Pubmed]
  23. Vitreal dihydroxyphenylacetic acid (DOPAC) as an index of retinal dopamine release. Megaw, P., Morgan, I., Boelen, M. J. Neurochem. (2001) [Pubmed]
  24. Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Weishaupt, J.H., Rohde, G., Pölking, E., Siren, A.L., Ehrenreich, H., Bähr, M. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  25. Expression and localization of angiogenic inhibitory factor, chondromodulin-I, in adult rat eye. Funaki, H., Sawaguchi, S., Yaoeda, K., Koyama, Y., Yaoita, E., Funaki, S., Shirakashi, M., Oshima, Y., Shukunami, C., Hiraki, Y., Abe, H., Yamamoto, T. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  26. Immunohistological localization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice. Bartsch, U., Kirchhoff, F., Schachner, M. J. Comp. Neurol. (1989) [Pubmed]
  27. Immunological study of acidic fibroblast growth factor (aFGF) distribution in the eye. Caruelle, D., Groux-Muscatelli, B., Gaudric, A., Sestier, C., Coscas, G., Caruelle, J.P., Barritault, D. J. Cell. Biochem. (1989) [Pubmed]
  28. Pseudorabies virus-induced leukocyte trafficking into the rat central nervous system. Rassnick, S., Enquist, L.W., Sved, A.F., Card, J.P. J. Virol. (1998) [Pubmed]
  29. Iontophoresis of fluorescein into the posterior segment of the rabbit eye. Maurice, D.M. Ophthalmology (1986) [Pubmed]
  30. Blood-ocular and blood-brain barrier function in streptozocin-induced diabetes in rats. Mäepea, O., Karlsson, C., Alm, A. Arch. Ophthalmol. (1984) [Pubmed]
  31. Intravitreal expanding gas bubble. A morphologic study in the rabbit eye. Miller, B., Lean, J.S., Miller, H., Ryan, S.J. Arch. Ophthalmol. (1984) [Pubmed]
  32. Transscleral iontophoresis of dexamethasone. Lam, T.T., Edward, D.P., Zhu, X.A., Tso, M.O. Arch. Ophthalmol. (1989) [Pubmed]
 
WikiGenes - Universities