The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Epx  -  eosinophil peroxidase

Mus musculus

Synonyms: EPO, Eosinophil peroxidase, Eper
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Epx


High impact information on Epx


Chemical compound and disease context of Epx


Biological context of Epx


Anatomical context of Epx


Associations of Epx with chemical compounds

  • Furthermore, using EPO-deficient mice and an EPO inhibitor resorcinol we demonstrate that eosinophil-derived peroxidase is critical in the development of GI dysfunction in experimental UC [1].
  • When administered 1 h following intracerebral injection of 10 mug ibotenic acid at day 5 of life, both a single injection of EPO (5000 IU/kg bw) and repetitive administrations of EPO reduced white and gray matter lesion size [2].
  • In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase [21].
  • In addition, EPO-mediated oxidative damage of proteins (e.g., bromination of tyrosine residues) recovered in bronchoalveolar lavage from OVA-treated wild-type mice was <10% of the levels observed in bronchoalveolar lavage recovered from asthma patients [14].
  • The absence of phenotypic consequences in these knockout animals extended beyond pulmonary histopathologies and airway changes, as EPO-deficient animals also displayed OVA-induced airway hyperresponsiveness after provocation with methacholine [14].

Regulatory relationships of Epx

  • In contrast, C/EBPepsilon, IL-5Ralpha, and eosinophil peroxidase mRNAs were induced in response to IL-3 and IL-5 after transfer onto OP9 cells [22].
  • It was found that the presence in all cultures (including those from control animals) of either ES antigens at an optimal concentration of 100 micrograms ml-1 (established in preliminary trials) or IL-5 at 500 units ml-1 led to enhanced EPO activity [18].

Other interactions of Epx


Analytical, diagnostic and therapeutic context of Epx


  1. Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase. Forbes, E., Murase, T., Yang, M., Matthaei, K.I., Lee, J.J., Lee, N.A., Foster, P.S., Hogan, S.P. J. Immunol. (2004) [Pubmed]
  2. Erythropoietin is neuroprotective against NMDA-receptor-mediated excitotoxic brain injury in newborn mice. Keller, M., Yang, J., Griesmaier, E., Gorna, A., Sarkozy, G., Urbanek, M., Gressens, P., Simbruner, G. Neurobiol. Dis. (2006) [Pubmed]
  3. Bleomycin-induced pulmonary fibrosis is independent of eosinophils. Hao, H., Cohen, D.A., Jennings, C.D., Bryson, J.S., Kaplan, A.M. J. Leukoc. Biol. (2000) [Pubmed]
  4. In vitro and in vivo interactions of D-penicillamine with tumors. Samoszuk, M., Nguyen, V. Anticancer Res. (1996) [Pubmed]
  5. Biotechnology licensing: Greens oppose EPO plant. Dickman, S. Nature (1989) [Pubmed]
  6. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. Iwasaki, H., Mizuno, S., Mayfield, R., Shigematsu, H., Arinobu, Y., Seed, B., Gurish, M.F., Takatsu, K., Akashi, K. J. Exp. Med. (2005) [Pubmed]
  7. Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis. Gladue, R.P., Carroll, L.A., Milici, A.J., Scampoli, D.N., Stukenbrok, H.A., Pettipher, E.R., Salter, E.D., Contillo, L., Showell, H.J. J. Exp. Med. (1996) [Pubmed]
  8. Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. Sanderson, C.J., Warren, D.J., Strath, M. J. Exp. Med. (1985) [Pubmed]
  9. Erythropoietin receptor signals both proliferation and erythroid-specific differentiation. Liboi, E., Carroll, M., D'Andrea, A.D., Mathey-Prevot, B. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. Friend spleen focus-forming virus glycoprotein gp55 interacts with the erythropoietin receptor in the endoplasmic reticulum and affects receptor metabolism. Yoshimura, A., D'Andrea, A.D., Lodish, H.F. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  11. Effects of sonicated eosinophils on the in vitro sensitivity of human lymphoma cells to glucose oxidase. Samoszuk, M.K., Nguyen, V., Thomas, C.T., Jacobson, D.M. Cancer Res. (1994) [Pubmed]
  12. Influence of some synthetic antioxidants on the growth and metastases formation of Lewis lung carcinoma and amelanotic B16 melanoma in C57BL mice. Kanclerz, A., Zbytniewski, Z., Boeryd, B. Arch. Geschwulstforsch. (1981) [Pubmed]
  13. Interleukin 5 plays an essential role in elicitation of contact sensitivity through dual effects on eosinophils and B-1 cells. Itakura, A., Kikuchi, Y., Kouro, T., Ikutani, M., Takaki, S., Askenase, P.W., Takatsu, K. Int. Arch. Allergy Immunol. (2006) [Pubmed]
  14. Extensive eosinophil degranulation and peroxidase-mediated oxidation of airway proteins do not occur in a mouse ovalbumin-challenge model of pulmonary inflammation. Denzler, K.L., Borchers, M.T., Crosby, J.R., Cieslewicz, G., Hines, E.M., Justice, J.P., Cormier, S.A., Lindenberger, K.A., Song, W., Wu, W., Hazen, S.L., Gleich, G.J., Lee, J.J., Lee, N.A. J. Immunol. (2001) [Pubmed]
  15. The murine eosinophil peroxidase gene (Epx) maps to chromosome 11. Denzler, K.L., Levin, W.J., Lee, J.J., Lee, N.A. Mamm. Genome (1997) [Pubmed]
  16. Cloned Th cells confer eosinophilic inflammation and bronchial hyperresponsiveness. Kaminuma, O., Mori, A., Ogawa, K., Nakata, A., Kikkawa, H., Ikezawa, K., Okudaira, H. Int. Arch. Allergy Immunol. (1999) [Pubmed]
  17. Recombinant murine (rm) interleukin (IL)-5 enhances the eosinophil peroxidase content in cells cultured in vitro compared with rmIL-3 and granulocyte-macrophage colony-stimulating factor. Oskéritzian, C., Le Mao, J., David, B. Exp. Hematol. (1998) [Pubmed]
  18. Eosinophil differentiation in response to Fasciola hepatica and its excretory/secretory antigens. Milbourne, E.A., Howell, M.J. Int. J. Parasitol. (1993) [Pubmed]
  19. A role for Th2 T-memory cells in early airway obstruction. Bell, S.J., Metzger, W.J., Welch, C.A., Gilmour, M.I. Cell. Immunol. (1996) [Pubmed]
  20. Role of adenosine in airway inflammation in an allergic mouse model of asthma. Fan, M., Jamal Mustafa, S. Int. Immunopharmacol. (2006) [Pubmed]
  21. Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse. Poynter, M.E., Persinger, R.L., Irvin, C.G., Butnor, K.J., van Hirtum, H., Blay, W., Heintz, N.H., Robbins, J., Hemenway, D., Taatjes, D.J., Janssen-Heininger, Y. Am. J. Physiol. Lung Cell Mol. Physiol. (2006) [Pubmed]
  22. Development and functional analysis of eosinophils from murine embryonic stem cells. Hamaguchi-Tsuru, E., Nobumoto, A., Hirose, N., Kataoka, S., Fujikawa-Adachi, K., Furuya, M., Tominaga, A. Br. J. Haematol. (2004) [Pubmed]
  23. Modulation of murine experimental asthma by Ascaris suum components. Itami, D.M., Oshiro, T.M., Araujo, C.A., Perini, A., Martins, M.A., Macedo, M.S., Macedo-Soares, M.F. Clin. Exp. Allergy (2005) [Pubmed]
  24. Effects of Y-24180, a receptor antagonist to platelet-activating factor, on allergic cutaneous eosinophilia in mice. Yamaguchi, S., Tomomatsu, N., Kagoshima, M., Okumoto, T., Komatsu, H. Life Sci. (1999) [Pubmed]
  25. Differentiation stages of eosinophils characterized by hyaluronic acid binding via CD44 and responsiveness to stimuli. Watanabe, Y., Hashizume, M., Kataoka, S., Hamaguchi, E., Morimoto, N., Tsuru, S., Katoh, S., Miyake, K., Matsushima, K., Tominaga, M., Kurashige, T., Fujimoto, S., Kincade, P.W., Tominaga, A. DNA Cell Biol. (2001) [Pubmed]
  26. Anti-interleukin (IL)-4 and -IL-5 antibodies downregulate IgE and eosinophilia in mice exposed to Aspergillus antigens. Kurup, V.P., Murali, P.S., Guo, J., Choi, H., Banerjee, B., Fink, J.N., Coffman, R.L. Allergy (1997) [Pubmed]
  27. Aspergillus fumigatus antigen induced eosinophilia in mice is abrogated by anti-IL-5 antibody. Murali, P.S., Kumar, A., Choi, H., Banasal, N.K., Fink, J.N., Kurup, V.P. J. Leukoc. Biol. (1993) [Pubmed]
  28. Prolonged expression and effective readministration of erythropoietin delivered with a fully deleted adenoviral vector. Maione, D., Wiznerowicz, M., Delmastro, P., Cortese, R., Ciliberto, G., La Monica, N., Savino, R. Hum. Gene Ther. (2000) [Pubmed]
  29. Hyperimmune serum modulates allergic response to spores in a murine model of allergic aspergillosis. Murali, P.S., Bamrah, B.S., Choi, H., Fink, J.N., Kurup, V.P. J. Leukoc. Biol. (1994) [Pubmed]
  30. Degranulation status of airway tissue eosinophils in mouse models of allergic airway inflammation. Malm-Erjefält, M., Persson, C.G., Erjefält, J.S. Am. J. Respir. Cell Mol. Biol. (2001) [Pubmed]
  31. Erythroblasts derived in vitro from embryonic stem cells in the presence of erythropoietin do not express the TER-119 antigen. Otani, T., Nakamura, S., Inoue, T., Ijiri, Y., Tsuji-Takayama, K., Motoda, R., Orita, K. Exp. Hematol. (2004) [Pubmed]
WikiGenes - Universities