The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Crustacea

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Crustacea

  • Effect of ambient oxygen concentration upon the acute toxicity of chlorophenols and heavy metals to the groundwater copepod Parastenocaris germanica (Crustacea) [1].
 

High impact information on Crustacea

  • Although crustacean tissue cholesterol content is high, Crustacea, like other arthropods; are incapable of cholesterol synthesis, and presumably are dependent for maintaining tissue cholesterol stores on the intestinal absorption of ingested sterol [2].
  • A new, simplified and overarching theory of noradrenaline function is inspired by an invertebrate model: neuromodulators in crustacea abruptly interrupt activity in neural networks and reorganize the elements into new functional networks determining the behavioral output [3].
  • Blue/purple AXT proteins are ubiquitous among invertebrate marine animals, particularly the Crustacea [4].
  • These findings allow consideration of MTH as a zinc thionein and question the view of all crustacea MT structures as copper thioneins [5].
  • It is speculated that homarine is not only a "methyl" donor but may serve as a reservoir of methyl groups in crustacea [6].
 

Chemical compound and disease context of Crustacea

 

Biological context of Crustacea

 

Anatomical context of Crustacea

 

Associations of Crustacea with chemical compounds

 

Gene context of Crustacea

  • Immunochemical and biochemical characterization of gastrin/cholecystokinin-like peptides in Palaemon serratus (Crustacea Decapoda): intermolt variations [24].
  • An area of continued interest, but of no consensus or general findings, relates to the presence and inducibility of CYP1 family members in crustacea [25].
  • Cytochromes P450 in crustacea [25].
  • Regional variation in the spatial scale of selection at MPI* and GPI* in the acorn barnacle Semibalanus balanoides (Crustacea) [26].
  • IgE-antibody reactivity to oysters and crustacea of sera from six oyster-sensitive, seven oyster- and crustacea-sensitive, and 12 crustacea-sensitive subjects was investigated [27].
 

Analytical, diagnostic and therapeutic context of Crustacea

References

  1. Effect of ambient oxygen concentration upon the acute toxicity of chlorophenols and heavy metals to the groundwater copepod Parastenocaris germanica (Crustacea). Notenboom, J., Cruys, K., Hoekstra, J., van Beelen, P. Ecotoxicol. Environ. Saf. (1992) [Pubmed]
  2. Crustacean intestinal detergent promotes sterol solubilization. Lester, R., Carey, M.C., Little, J.M., Cooperatein, L.A., Dowd, S.R. Science (1975) [Pubmed]
  3. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Bouret, S., Sara, S.J. Trends Neurosci. (2005) [Pubmed]
  4. The molecular basis of the coloration mechanism in lobster shell: beta-crustacyanin at 3.2-A resolution. Cianci, M., Rizkallah, P.J., Olczak, A., Raftery, J., Chayen, N.E., Zagalsky, P.F., Helliwell, J.R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. A new insight into metallothionein (MT) classification and evolution. The in vivo and in vitro metal binding features of Homarus americanus recombinant MT. Valls, M., Bofill, R., Gonzalez-Duarte, R., Gonzalez-Duarte, P., Capdevila, M., Atrian, S. J. Biol. Chem. (2001) [Pubmed]
  6. Biosynthesis and physiological role of homarine in marine shrimp. Netherton, J.C., Gurin, S. J. Biol. Chem. (1982) [Pubmed]
  7. Testosterone and energy metabolism in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following exposure to endocrine disruptors. Verslycke, T., Poelmans, S., De Wasch, K., De Brabander, H.F., Janssen, C.R. Environ. Toxicol. Chem. (2004) [Pubmed]
  8. Differences in the acute toxicities of tributyltin between the Caprellidea and the Gammaridea (Crustacea: Amphipoda). Ohji, M., Takeuchi, I., Takahashi, S., Tanabe, S., Miyazaki, N. Mar. Pollut. Bull. (2002) [Pubmed]
  9. Toxicity of toxaphene to Bosmina longirostris and Daphnia spp. (Crustacea). Novak, A.J., Passino, D.R. Bulletin of environmental contamination and toxicology. (1986) [Pubmed]
  10. Acute and chronic toxicity of Potassium Chloride (KCl) and Potassium Acetate (KC(2)H(3)O(2)) to Daphnia similis and Ceriodaphnia dubia (Crustacea; Cladocera). Utz, L.R., Bohrer, M.B. Bulletin of environmental contamination and toxicology. (2001) [Pubmed]
  11. Large-scale gene rearrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Machida, R.J., Miya, M.U., Nishida, M., Nishida, S. Gene (2004) [Pubmed]
  12. Low mitochondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: possible impact of climatic variation during recent glaciation. Bucklin, A., Wiebe, P.H. J. Hered. (1998) [Pubmed]
  13. Bioconversion of desmosterol to cholesterol at various stages of molting cycle in Palaemon serratus Pennant, Crustacea, Decapoda. Teshima, S.I., Ceccaldi, H.J., Patrois, J., Kanazawa, A. Comp. Biochem. Physiol., B (1975) [Pubmed]
  14. Molecular cloning of a cDNA that encodes a serine protease with chymotryptic and collagenolytic activities in the hepatopancreas of the shrimp Penaeus vanameii (Crustacea, Decapoda). Sellos, D., Van Wormhoudt, A. FEBS Lett. (1992) [Pubmed]
  15. An examination of the ability of inositol 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustacea. Lea, T.J., Griffiths, P.J., Tregear, R.T., Ashley, C.C. FEBS Lett. (1986) [Pubmed]
  16. Histamine: a putative afferent neurotransmitter in Limulus eyes. Battelle, B.A., Calman, B.G., Andrews, A.W., Grieco, F.D., Mleziva, M.B., Callaway, J.C., Stuart, A.E. J. Comp. Neurol. (1991) [Pubmed]
  17. Hemolymph ecdysteroids and molt cycle in males and females of Siriella armata M-Edw. (Crustacea: Mysidacea): possible control by the MI-ME X-organ of the eyestalk. Cuzin-Roudy, J., Strambi, C., Strambi, A., Delbecque, J.P. Gen. Comp. Endocrinol. (1989) [Pubmed]
  18. Colchicine, cytochalasin B, cyclic AMP, and pigment granule translocation in melanophores of Uca pugilator and Hemigrapsus oregonensis (Crustacea: Decapoda). Lambert, D.T., Crowe, J.H. Comp. Biochem. Physiol. C, Comp. Pharmacol. (1976) [Pubmed]
  19. IgE reactivity against a cross-reactive allergen in crustacea and mollusca: evidence for tropomyosin as the common allergen. Leung, P.S., Chow, W.K., Duffey, S., Kwan, H.S., Gershwin, M.E., Chu, K.H. J. Allergy Clin. Immunol. (1996) [Pubmed]
  20. Insulin action: 1948-80. Levine, R. Diabetes Care (1981) [Pubmed]
  21. Evidence for the presence of serotonin in Mysidacea (Crustacea, Peracarida) as revealed by fluorescence immunohistochemistry. Moreau, X., Benzid, D., De Jong, L., Barthélémy, R.M., Casanova, J.P. Cell Tissue Res. (2002) [Pubmed]
  22. How a low tissue O2 strategy could be conserved in early crustaceans: the example of the podocopid ostracods. Corbari, L., Carbonel, P., Massabuau, J.C. J. Exp. Biol. (2004) [Pubmed]
  23. Nasal delivery of chitosan-DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Iqbal, M., Lin, W., Jabbal-Gill, I., Davis, S.S., Steward, M.W., Illum, L. Vaccine (2003) [Pubmed]
  24. Immunochemical and biochemical characterization of gastrin/cholecystokinin-like peptides in Palaemon serratus (Crustacea Decapoda): intermolt variations. Favrel, P., Van-Wormhoudt, A., Studler, J.M., Bellon, C. Gen. Comp. Endocrinol. (1987) [Pubmed]
  25. Cytochromes P450 in crustacea. James, M.O., Boyle, S.M. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol. (1998) [Pubmed]
  26. Regional variation in the spatial scale of selection at MPI* and GPI* in the acorn barnacle Semibalanus balanoides (Crustacea). Véliz, D., Bourget, E., Bernatchez, L. J. Evol. Biol. (2004) [Pubmed]
  27. Reactivity of IgE antibodies with crustacea and oyster allergens: evidence for common antigenic structures. Lehrer, S.B., McCants, M.L. J. Allergy Clin. Immunol. (1987) [Pubmed]
  28. The distribution of zinc, cadmium, lead and copper within the hepatopancreas of a woodlouse. Hopkin, S.P., Martin, M.H. Tissue & cell. (1982) [Pubmed]
 
WikiGenes - Universities