The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Nasal Polyps

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nasal Polyps

 

High impact information on Nasal Polyps

 

Chemical compound and disease context of Nasal Polyps

 

Biological context of Nasal Polyps

 

Anatomical context of Nasal Polyps

 

Gene context of Nasal Polyps

 

Analytical, diagnostic and therapeutic context of Nasal Polyps

  • We report AAV-CFTR gene transfer and expression after infection of primary CF nasal polyp cells and after in vivo delivery of AAV-CFTR vector to one lobe of the rabbit lung through a fiberoptic bronchoscope [27].
  • Recombinant IGF-1 exhibited similar basophil-selective effects as IGF-2, and both growth factors were detected in nasal polyp extracts by ELISA [28].
  • RESULTS: Semi-quantitative RT-PCR/Southern analysis of RNA obtained from the 10 surgical specimens demonstrated that iNOS mRNA expression was significantly increased in the five nasal polyps (P < 0.05) [29].
  • NF-kappaB deoxyribonucleic acid-binding activity was assayed by means of electrophoretic mobility shift assay (EMSA) and iNOS expression examined using immunohistochemical techniques in healthy nasal mucosa and chronically inflamed nasal polyps [30].
  • Immunohistochemical and Western blotting techniques were employed to identify the presence of TGF-alpha in inferior-turbinate and nasal-polyp samples of rhinitic subjects [31].

References

  1. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Gerber, B.O., Zanni, M.P., Uguccioni, M., Loetscher, M., Mackay, C.R., Pichler, W.J., Yawalkar, N., Baggiolini, M., Moser, B. Curr. Biol. (1997) [Pubmed]
  2. Sinusitis in adults and its relation to allergic rhinitis, asthma, and nasal polyps. Slavin, R.G. J. Allergy Clin. Immunol. (1988) [Pubmed]
  3. Nasal polyp inflammation. Effect of topical nasal steroid. Kanai, N., Denburg, J., Jordana, M., Dolovich, J. Am. J. Respir. Crit. Care Med. (1994) [Pubmed]
  4. Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Picado, C., Fernandez-Morata, J.C., Juan, M., Roca-Ferrer, J., Fuentes, M., Xaubet, A., Mullol, J. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  5. Immortalization of nasal polyp epithelial cells from cystic fibrosis patients. Scholte, B.J., Kansen, M., Hoogeveen, A.T., Willemse, R., Rhim, J.S., van der Kamp, A.W., Bijman, J. Exp. Cell Res. (1989) [Pubmed]
  6. Rapid secretion of prestored interleukin 8 from Weibel-Palade bodies of microvascular endothelial cells. Utgaard, J.O., Jahnsen, F.L., Bakka, A., Brandtzaeg, P., Haraldsen, G. J. Exp. Med. (1998) [Pubmed]
  7. Eosinophil adhesion to nasal polyp endothelium is P-selectin-dependent. Symon, F.A., Walsh, G.M., Watson, S.R., Wardlaw, A.J. J. Exp. Med. (1994) [Pubmed]
  8. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. Rubenstein, R.C., Egan, M.E., Zeitlin, P.L. J. Clin. Invest. (1997) [Pubmed]
  9. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. Ponath, P.D., Qin, S., Ringler, D.J., Clark-Lewis, I., Wang, J., Kassam, N., Smith, H., Shi, X., Gonzalo, J.A., Newman, W., Gutierrez-Ramos, J.C., Mackay, C.R. J. Clin. Invest. (1996) [Pubmed]
  10. Histamine, asthma, and nasal polyps. Drake-Lee, A.B., McLaughlan, P., Baker, T.H. Lancet (1982) [Pubmed]
  11. Distinct immunohistochemical localization of IL-4 in human inflamed airway tissues. IL-4 is localized to eosinophils in vivo and is released by peripheral blood eosinophils. Nonaka, M., Nonaka, R., Woolley, K., Adelroth, E., Miura, K., Okhawara, Y., Glibetic, M., Nakano, K., O'Byrne, P., Dolovich, J. J. Immunol. (1995) [Pubmed]
  12. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (MUC5). Meezaman, D., Charles, P., Daskal, E., Polymeropoulos, M.H., Martin, B.M., Rose, M.C. J. Biol. Chem. (1994) [Pubmed]
  13. Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients. Kowalski, M.L., Pawliczak, R., Wozniak, J., Siuda, K., Poniatowska, M., Iwaszkiewicz, J., Kornatowski, T., Kaliner, M.A. Am. J. Respir. Crit. Care Med. (2000) [Pubmed]
  14. Prostaglandin E2 induces MUC8 gene expression via a mechanism involving ERK MAPK/RSK1/cAMP response element binding protein activation in human airway epithelial cells. Cho, K.N., Choi, J.Y., Kim, C.H., Baek, S.J., Chung, K.C., Moon, U.Y., Kim, K.S., Lee, W.J., Koo, J.S., Yoon, J.H. J. Biol. Chem. (2005) [Pubmed]
  15. Regenerating cells in human airway surface epithelium represent preferential targets for recombinant adenovirus. Dupuit, F., Zahm, J.M., Pierrot, D., Brezillon, S., Bonnet, N., Imler, J.L., Pavirani, A., Puchelle, E. Hum. Gene Ther. (1995) [Pubmed]
  16. Nuclear factor-kappaB activity is down-regulated in nasal polyps from aspirin-sensitive asthmatics. Picado, C., Bioque, G., Roca-Ferrer, J., Pujols, L., Mullol, J., Benitez, P., Bulbena, O. Allergy (2003) [Pubmed]
  17. CFTR transgene expression in primary DeltaF508 epithelial cell cultures from human nasal polyps following gene transfer with cationic phosphonolipids. Montier, T., Delépine, P., Marianowski, R., Le Ny, K., Le Bris, M., Gillet, D., Potard, G., Mondine, P., Frachon, I., Yaouanc, J.J., Clément, J.C., Des Abbayes, H., Férec, C. Mol. Biotechnol. (2004) [Pubmed]
  18. Immunocytochemical distribution of the c-H-ras protein in nasal polyps: localization to the terminal bars. Morinaka, S., Nakamura, H. Auris, nasus, larynx. (2000) [Pubmed]
  19. CD40 expression by human peripheral blood eosinophils. Ohkawara, Y., Lim, K.G., Xing, Z., Glibetic, M., Nakano, K., Dolovich, J., Croitoru, K., Weller, P.F., Jordana, M. J. Clin. Invest. (1996) [Pubmed]
  20. Eosinophils in chronically inflamed human upper airway tissues express transforming growth factor beta 1 gene (TGF beta 1). Ohno, I., Lea, R.G., Flanders, K.C., Clark, D.A., Banwatt, D., Dolovich, J., Denburg, J., Harley, C.B., Gauldie, J., Jordana, M. J. Clin. Invest. (1992) [Pubmed]
  21. CFTR and differentiation markers expression in non-CF and delta F 508 homozygous CF nasal epithelium. Dupuit, F., Kälin, N., Brézillon, S., Hinnrasky, J., Tümmler, B., Puchelle, E. J. Clin. Invest. (1995) [Pubmed]
  22. Protein-tyrosine kinase Syk expressed in human nasal fibroblasts and its effect on RANTES production. Yamada, T., Fujieda, S., Yanagi, S., Yamamura, H., Inatome, R., Sunaga, H., Saito, H. J. Immunol. (2001) [Pubmed]
  23. Stem cell factor in nasal polyposis and allergic rhinitis: increased expression by structural cells is suppressed by in vivo topical corticosteroids. Kim, Y.K., Nakagawa, N., Nakano, K., Sulakvelidze, I., Dolovich, J., Denburg, J. J. Allergy Clin. Immunol. (1997) [Pubmed]
  24. IL-1 induced chemokine production through the association of Syk with TNF receptor-associated factor-6 in nasal fibroblast lines. Yamada, T., Fujieda, S., Yanagi, S., Yamamura, H., Inatome, R., Yamamoto, H., Igawa, H., Saito, H. J. Immunol. (2001) [Pubmed]
  25. Characterization of interleukin-4-stimulated nasal polyp fibroblasts. Steinke, J.W., Crouse, C.D., Bradley, D., Hise, K., Lynch, K., Kountakis, S.E., Borish, L. Am. J. Respir. Cell Mol. Biol. (2004) [Pubmed]
  26. Quantitation of mucin mRNA in respiratory and intestinal epithelial cells. Voynow, J.A., Rose, M.C. Am. J. Respir. Cell Mol. Biol. (1994) [Pubmed]
  27. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Flotte, T.R., Afione, S.A., Conrad, C., McGrath, S.A., Solow, R., Oka, H., Zeitlin, P.L., Guggino, W.B., Carter, B.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  28. Identification of selective basophil chemoattractants in human nasal polyps as insulin-like growth factor-1 and insulin-like growth factor-2. Hartnell, A., Heinemann, A., Conroy, D.M., Wait, R., Sturm, G.J., Caversaccio, M., Jose, P.J., Williams, T.J. J. Immunol. (2004) [Pubmed]
  29. Expression and localization of the inducible isoform of nitric oxide synthase in nasal polyp epithelium. Watkins, D.N., Lewis, R.H., Basclain, K.A., Fisher, P.H., Peroni, D.J., Garlepp, M.J., Thompson, P.J. Clin. Exp. Allergy (1998) [Pubmed]
  30. Constitutive nuclear factor-kappaB activity in human upper airway tissues and nasal epithelial cells. Ramis, I., Bioque, G., Lorente, J., Jares, P., Quesada, P., Roselló-Catafau, J., Gelpí, E., Bulbena, O. Eur. Respir. J. (2000) [Pubmed]
  31. Transforming growth factor-alpha and rhinitis. Lam, S.M., Zhu, D.F., Ahn, J.M. Laryngoscope (1999) [Pubmed]
 
WikiGenes - Universities