The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

PHOSPHORUS     phosphane

Synonyms: Phosphor, Hishigado, PHOSPHINE, fosfano, fosfina, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Red phosphorus

 

Psychiatry related information on Red phosphorus

 

High impact information on Red phosphorus

 

Chemical compound and disease context of Red phosphorus

 

Biological context of Red phosphorus

 

Anatomical context of Red phosphorus

 

Associations of Red phosphorus with other chemical compounds

 

Gene context of Red phosphorus

  • To determine the actual situation in Greece, we evaluated serum 25-hydroxyvitamin D (25[OH]D), calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), parathyroid hormone (PTH), osteocalcin (OC), and calcitonin (CT) concentrations in 123 healthy mother-newborn pairs recruited from a public hospital of the sunny Athenian region [34].
  • The low P diet raised plasma 1,25-(OH)2D in normal mice, but lowered it in Hyp mice to nondetectable levels [35].
  • Cardiac phosphorus-31 two-dimensional chemical shift imaging in patients with hereditary hemochromatosis [36].
  • Carbon-13 and phosphorus-31 nuclear magnetic resonance spectroscopy has been used to study this interaction by examining spectral consequences of additions of MBP to membrane preparations of the negatively charged lipid phosphatidylglycerol (PG) [37].
  • Patients with complete SCI (ASIA A) had more suppressed PTH (p < .03) and higher urinary urea nitrogen (p < .05) levels than SCI patients with incomplete injuries (ASIA B-D) [38].
 

Analytical, diagnostic and therapeutic context of Red phosphorus

References

  1. Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. Buchthal, S.D., den Hollander, J.A., Merz, C.N., Rogers, W.J., Pepine, C.J., Reichek, N., Sharaf, B.L., Reis, S., Kelsey, S.F., Pohost, G.M. N. Engl. J. Med. (2000) [Pubmed]
  2. Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils. Nunnally, R.L., Bottomley, P.A. Science (1981) [Pubmed]
  3. Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo. Schaefer, S., Schwartz, G.G., Gober, J.R., Wong, A.K., Camacho, S.A., Massie, B., Weiner, M.W. J. Clin. Invest. (1990) [Pubmed]
  4. Brain abnormalities in Duchenne muscular dystrophy: phosphorus-31 magnetic resonance spectroscopy and neuropsychological study. Tracey, I., Scott, R.B., Thompson, C.H., Dunn, J.F., Barnes, P.R., Styles, P., Kemp, G.J., Rae, C.D., Pike, M., Radda, G.K. Lancet (1995) [Pubmed]
  5. Cerebral phosphorus-31 magnetic resonance spectroscopy in patients with chronic hepatic encephalopathy. Taylor-Robinson, S.D., Sargentoni, J., Mallalieu, R.J., Bell, J.D., Bryant, D.J., Coutts, G.A., Morgan, M.Y. Hepatology (1994) [Pubmed]
  6. High-energy phosphate metabolism in the frontal lobes of patients with panic disorder detected by phase-encoded 31P-MRS. Shioiri, T., Kato, T., Murashita, J., Hamakawa, H., Inubushi, T., Takahashi, S. Biol. Psychiatry (1996) [Pubmed]
  7. In vivo 31P NMR profiles of Alzheimer's disease and multiple subcortical infarct dementia. Brown, G.G., Levine, S.R., Gorell, J.M., Pettegrew, J.W., Gdowski, J.W., Bueri, J.A., Helpern, J.A., Welch, K.M. Neurology (1989) [Pubmed]
  8. Phospholipid abnormalities in early Alzheimer's disease. In vivo phosphorus 31 magnetic resonance spectroscopy. Cuénod, C.A., Kaplan, D.B., Michot, J.L., Jehenson, P., Leroy-Willig, A., Forette, F., Syrota, A., Boller, F. Arch. Neurol. (1995) [Pubmed]
  9. Confirmation of the identity of the major phospholipid in human lens membranes. Ferguson, S.R., Borchman, D., Yappert, M.C. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  10. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. Weiss, R.G., Bottomley, P.A., Hardy, C.J., Gerstenblith, G. N. Engl. J. Med. (1990) [Pubmed]
  11. Monitoring the time course of cerebral deoxyglucose metabolism by 31P nuclear magnetic resonance spectroscopy. Deuel, R.K., Yue, G.M., Sherman, W.R., Schickner, D.J., Ackerman, J.J. Science (1985) [Pubmed]
  12. Nuclear magnetic resonance technology for medical studies. Budinger, T.F., Lauterbur, P.C. Science (1984) [Pubmed]
  13. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Findly, R.C., Gillies, R.J., Shulman, R.G. Science (1983) [Pubmed]
  14. Cellular applications of 31P and 13C nuclear magnetic resonance. Shulman, R.G., Brown, T.R., Ugurbil, K., Ogawa, S., Cohen, S.M., den Hollander, J.A. Science (1979) [Pubmed]
  15. A phosphorus 31 nuclear magnetic resonance study of the intermediates of the Escherichia coli succinyl coenzyme A synthetase reaction. Evidence for substrate synergism and catalytic cooperativity. Vogel, H.J., Bridger, W.A. J. Biol. Chem. (1982) [Pubmed]
  16. Vascular calcification mechanisms. Giachelli, C.M. J. Am. Soc. Nephrol. (2004) [Pubmed]
  17. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Schrauwen-Hinderling, V.B., Kooi, M.E., Hesselink, M.K., Jeneson, J.A., Backes, W.H., van Echteld, C.J., van Engelshoven, J.M., Mensink, M., Schrauwen, P. Diabetologia (2007) [Pubmed]
  18. Creatinine kinase kinetics studied by phosphorus-31 nuclear magnetic resonance in a canine model of chronic hypertension-induced cardiac hypertrophy. Osbakken, M., Douglas, P.S., Ivanics, T., Zhang, D.N., Van Winkle, T. J. Am. Coll. Cardiol. (1992) [Pubmed]
  19. Adenosine triphosphate-sensitive potassium channel blocking agent ameliorates, but the opening agent aggravates, ischemia/reperfusion-induced injury. Heart function studies in nonfibrillating isolated hearts. Tosaki, A., Hellegouarch, A. J. Am. Coll. Cardiol. (1994) [Pubmed]
  20. Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. Hotchkiss, R.S., Karl, I.E. JAMA (1992) [Pubmed]
  21. Examination of a myopathy by phosphorus nuclear magnetic resonance. Gadian, D., Radda, G., Ross, B., Hockaday, J., Bore, P., Taylor, D., Styles, P. Lancet (1981) [Pubmed]
  22. Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates. Wu, Y., Chesler, D.A., Glimcher, M.J., Garrido, L., Wang, J., Jiang, H.J., Ackerman, J.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  23. Phosphorus magnetic resonance spectroscopy of patients with mitochondrial cytopathies demonstrates decreased levels of brain phosphocreatine. Eleff, S.M., Barker, P.B., Blackband, S.J., Chatham, J.C., Lutz, N.W., Johns, D.R., Bryan, R.N. Ann. Neurol. (1990) [Pubmed]
  24. Role of sodium/calcium exchange in the mechanism of myocardial stunning: protective effect of reperfusion with high sodium solution. Kusuoka, H., Camilion de Hurtado, M.C., Marban, E. J. Am. Coll. Cardiol. (1993) [Pubmed]
  25. Effects of thyroid hormones on skeletal muscle bioenergetics. In vivo phosphorus-31 magnetic resonance spectroscopy study of humans and rats. Argov, Z., Renshaw, P.F., Boden, B., Winokur, A., Bank, W.J. J. Clin. Invest. (1988) [Pubmed]
  26. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Pettegrew, J.W., Keshavan, M.S., Panchalingam, K., Strychor, S., Kaplan, D.B., Tretta, M.G., Allen, M. Arch. Gen. Psychiatry (1991) [Pubmed]
  27. Phosphate metabolites in lymphoid, Friend erythroleukemia, and HeLa cells observed by high-resolution 31P nuclear magnetic resonance. Navon, G., Navon, R., Shulman, R.G., Yamane, T. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  28. Dynamic relation between myocardial contractility and energy metabolism during and following brief coronary occlusion in the pig. Schwartz, G.G., Schaefer, S., Meyerhoff, D.J., Gober, J., Fochler, P., Massie, B., Weiner, M.W. Circ. Res. (1990) [Pubmed]
  29. 31P NMR study of cerebral metabolism during prolonged seizures in the neonatal dog. Young, R.S., Osbakken, M.D., Briggs, R.W., Yagel, S.K., Rice, D.W., Goldberg, S. Ann. Neurol. (1985) [Pubmed]
  30. Brain alkaline intracellular pH after neonatal encephalopathy. Robertson, N.J., Cowan, F.M., Cox, I.J., Edwards, A.D. Ann. Neurol. (2002) [Pubmed]
  31. Effect of cyclosporine on hepatic energy status and on fructose metabolism after portacaval shunt in dog as monitored by phosphorus-31 nuclear magnetic resonance spectroscopy in vivo. Rossaro, L., Mazzaferro, V., Scotti-Foglieni, C.L., Williams, D.S., Simplaceanu, E., Simplaceanu, V., Francavilla, A., Starzl, T.E., Ho, C., Van Thiel, D.H. Hepatology (1991) [Pubmed]
  32. Hepatic metabolism during acute ethanol administration: a phosphorus-31 nuclear magnetic resonance study on the perfused rat liver under normoxic or hypoxic conditions. Desmoulin, F., Canioni, P., Crotte, C., Gérolami, A., Cozzone, P.J. Hepatology (1987) [Pubmed]
  33. Interrelation between glycosidic torsion, sugar pucker, and backbone conformation in 5'-beta-nucleotides. A 1H and 31P fast Fourier transform nuclear magnetic resonance investigation of the conformation of 8-aza-5'-beta-adenosine monophosphate and 8-aza-5'-beta-guanosine monophosphate. Lee, C.H., Evans, F.E., Sarma, R.H. J. Biol. Chem. (1975) [Pubmed]
  34. Low vitamin D status in mother-newborn pairs in Greece. Nicolaidou, P., Hatzistamatiou, Z., Papadopoulou, A., Kaleyias, J., Floropoulou, E., Lagona, E., Tsagris, V., Costalos, C., Antsaklis, A. Calcif. Tissue Int. (2006) [Pubmed]
  35. Abnormal vitamin D metabolism in the X-linked hypophosphatemic mouse. Meyer, R.A., Gray, R.W., Meyer, M.H. Endocrinology (1980) [Pubmed]
  36. Cardiac phosphorus-31 two-dimensional chemical shift imaging in patients with hereditary hemochromatosis. Schocke, M.F., Zoller, H., Vogel, W., Wolf, C., Kremser, C., Steinboeck, P., Poelzl, G., Pachinger, O., Jaschke, W.R., Metzler, B. Magnetic resonance imaging. (2004) [Pubmed]
  37. Binding of human normal and multiple sclerosis-derived myelin basic protein to phospholipid vesicles: effects on membrane head group and bilayer regions. Deber, C.M., Hughes, D.W., Fraser, P.E., Pawagi, A.B., Moscarello, M.A. Arch. Biochem. Biophys. (1986) [Pubmed]
  38. Parathyroid hormone suppression in spinal cord injury patients is associated with the degree of neurologic impairment and not the level of injury. Mechanick, J.I., Pomerantz, F., Flanagan, S., Stein, A., Gordon, W.A., Ragnarsson, K.T. Archives of physical medicine and rehabilitation. (1997) [Pubmed]
  39. Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. Bottomley, P.A. Science (1985) [Pubmed]
  40. Membrane fusion through point defects in bilayers. Hui, S.W., Stewart, T.P., Boni, L.T., Yeagle, P.L. Science (1981) [Pubmed]
  41. In vivo one-dimensional imaging of phosphorus metabolites by phosphorus-31 nuclear magnetic resonance. Haselgrove, J.C., Subramanian, V.H., Leigh, J.S., Gyulai, L., Chance, B. Science (1983) [Pubmed]
  42. Evaluation of high-energy phosphate metabolism during cardioplegic arrest and reperfusion: a phosphorus-31 nuclear magnetic resonance study. Pernot, A.C., Ingwall, J.S., Menasche, P., Grousset, C., Bercot, M., Piwnica, A., Fossel, E.T. Circulation (1983) [Pubmed]
  43. Verapamil preserves myocardial performance and energy metabolism in left ventricular hypertrophy following ischemia and reperfusion. Phosphorus 31 magnetic resonance spectroscopy study. Buser, P.T., Wagner, S., Wu, S.T., Derugin, N., Parmley, W.W., Higgins, C.B., Wikman-Coffelt, J. Circulation (1989) [Pubmed]
 
WikiGenes - Universities