The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CD83  -  CD83 molecule

Homo sapiens

Synonyms: B-cell activation protein, BL11, CD83 antigen, Cell surface protein HB15, HB15, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CD83


Psychiatry related information on CD83

  • The high frequency of the lupus-derived 16/6 Id in PBC may accompany the polyclonal B-cell activation seen in that disease [5].

High impact information on CD83


Chemical compound and disease context of CD83


Biological context of CD83


Anatomical context of CD83

  • Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily [16].
  • CD83+ cells were also the most potent stimulator cells in an allogeneic MLR when compared with other leukocyte lineages [16].
  • Immature moDC but not mature moDC nor monocytes captured CpG-ODNs. moDC stimulation with the CpG-A ODN D19 up-regulated CD83, CD86, and HLA-DR [21].
  • We found two distinct populations of DC present in CD patients: a DC-specific ICAM-3 grabbing non-integrin (DC-SIGN)(+) population that was present scattered throughout the mucosa, and a CD83(+) population that was present in aggregated lymphoid nodules and as single cells in the lamina propria [22].
  • Cultured cells had the morphological appearance of DC and expressed the DC-associated antigens CD1A (range 2-87%) and CD83 (15-44%) [23].

Associations of CD83 with chemical compounds

  • Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin [24].
  • In this study, analysis of leukocyte subpopulations isolated from human blood revealed that circulating or cultured B and T cells, NK cells, and monocytes did not express CD83, whereas CD83+ cells were predominantly found in the dendritic cell-enriched metrizamide low density fraction of plastic nonadherent blood mononuclear cells [16].
  • When challenged by lipopolysaccharide, these cells upregulate costimulatory molecules, express CD83, and become mature DC [25].
  • CD83 is a 45-kDa glycoprotein and member of the immunoglobulin (Ig) superfamily [17].
  • From concentration-dependent changes in CD83 expression, we found an apparent ID50 >>1.5 micromol/L sulfasalazine [26].

Physical interactions of CD83


Enzymatic interactions of CD83

  • Co-crosslinking of CD19 and BCR was shown to enhance B-cell activation due to the recruitment of further signaling molecules to the activator complex by the phosphorylated tyrosine residues of CD19 [32].

Regulatory relationships of CD83

  • CD38 is expressed on human mature monocyte-derived dendritic cells and is functionally involved in CD83 expression and IL-12 induction [33].
  • Stimulation of activated IL-4-Mo-DC through OX40L strikingly enhanced their maturation as evidenced by CD83 up-regulation, CD115 (CSF-1R) down-regulation, and typical morphologic changes [34].
  • Among these neuropeptides, only VIP induces the production of bioactive IL-12 and the neoexpression of CD83 on a fraction of the DC population, with an effect significant at 100 and 10 nM, respectively [35].
  • TNF-alpha induced the cluster formation of the cells and the enhancement of cell surface expression levels of CD83, CD86, and HLA-DR, and T cell stimulatory capacity, whereas the capacities for the endocytosis and the chemotactic migration were suppressed in these cells [36].
  • In tonsil, FK-positive DC expressed CD83, a marker for mature DC [37].

Other interactions of CD83

  • Following enrichment, DC developed an activated phenotype with up-regulation of CD80, CD86, and CD83 expression [38].
  • CD83 expression was increased by a soluble factor secreted from BCG-CWS-treated DC and was completely inhibited by monoclonal antibodies against TNF-alpha [39].
  • RESULTS: DCs cultured in FEP or PS had comparable cell yield, viability, and CD83 and CCR7 expression [40].
  • However, both the early and the late HCMV conditioning medium, harvested from MRC-5 cells at 24 h or 7-9 days after infection, respectively, induced a higher ratio of DCs expressing maturation markers (CD40, CD83, CD86 and HLA-DR) on the surface of the cells [41].
  • In normal colon the number of DC-SIGN(+) DC was lower and CD83(+) DC were detected only in very few solitary lymphoid nodules [22].

Analytical, diagnostic and therapeutic context of CD83


  1. HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. Wilflingseder, D., Müllauer, B., Schramek, H., Banki, Z., Pruenster, M., Dierich, M.P., Stoiber, H. J. Immunol. (2004) [Pubmed]
  2. Activation, cytokine production, and intracellular survival of bacteria in Salmonella-infected human monocyte-derived macrophages and dendritic cells. Pietilä, T.E., Veckman, V., Kyllönen, P., Lähteenmäki, K., Korhonen, T.K., Julkunen, I. J. Leukoc. Biol. (2005) [Pubmed]
  3. Role of CD83 in the immunomodulation of dendritic cells. Lechmann, M., Zinser, E., Golka, A., Steinkasserer, A. Int. Arch. Allergy Immunol. (2002) [Pubmed]
  4. Upregulation of co-stimulatory molecule expression and dendritic cell marker (CD83) on B cells in periodontal disease. Mahanonda, R., Sa-Ard-Iam, N., Yongvanitchit, K., Wisetchang, M., Ishikawa, I., Nagasawa, T., Walsh, D.S., Pichyangkul, S. J. Periodont. Res. (2002) [Pubmed]
  5. Anti-DNA antibody idiotypes in primary biliary cirrhosis. Schattner, A., Kaburaki, Y., Kaplan, M.M., Miller, K.B. Cell. Immunol. (1987) [Pubmed]
  6. CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Levy, S., Todd, S.C., Maecker, H.T. Annu. Rev. Immunol. (1998) [Pubmed]
  7. T cell-independent antigens type 2. Mond, J.J., Lees, A., Snapper, C.M. Annu. Rev. Immunol. (1995) [Pubmed]
  8. T cell-dependent B cell activation. Parker, D.C. Annu. Rev. Immunol. (1993) [Pubmed]
  9. Immunologic abnormalities in the acquired immunodeficiency syndrome. Lane, H.C., Fauci, A.S. Annu. Rev. Immunol. (1985) [Pubmed]
  10. Molecular cloning and expression of a receptor for human tumor necrosis factor. Schall, T.J., Lewis, M., Koller, K.J., Lee, A., Rice, G.C., Wong, G.H., Gatanaga, T., Granger, G.A., Lentz, R., Raab, H. Cell (1990) [Pubmed]
  11. Latent membrane protein 1 of Epstein-Barr virus induces CD83 by the NF-kappaB signaling pathway. Dudziak, D., Kieser, A., Dirmeier, U., Nimmerjahn, F., Berchtold, S., Steinkasserer, A., Marschall, G., Hammerschmidt, W., Laux, G., Bornkamm, G.W. J. Virol. (2003) [Pubmed]
  12. Prognostic significance of mature dendritic cells and factors associated with their accumulation in metastatic liver tumors from colorectal cancer. Miyagawa, S., Soeda, J., Takagi, S., Miwa, S., Ichikawa, E., Noike, T. Hum. Pathol. (2004) [Pubmed]
  13. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Young, S.L., Simon, M.A., Baird, M.A., Tannock, G.W., Bibiloni, R., Spencely, K., Lane, J.M., Fitzharris, P., Crane, J., Town, I., Addo-Yobo, E., Murray, C.S., Woodcock, A. Clin. Diagn. Lab. Immunol. (2004) [Pubmed]
  14. The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Wang, L., Wakisaka, N., Tomlinson, C.C., DeWire, S.M., Krall, S., Pagano, J.S., Damania, B. Cancer Res. (2004) [Pubmed]
  15. Regulation of human B cell activation by prostaglandin E2. Suppression of the generation of immunoglobulin-secreting cells. Jelinek, D.F., Thompson, P.A., Lipsky, P.E. J. Clin. Invest. (1985) [Pubmed]
  16. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. Zhou, L.J., Tedder, T.F. J. Immunol. (1995) [Pubmed]
  17. Overexpression, purification, and biochemical characterization of the extracellular human CD83 domain and generation of monoclonal antibodies. Lechmann, M., Kremmer, E., Sticht, H., Steinkasserer, A. Protein Expr. Purif. (2002) [Pubmed]
  18. Stimulation of autologous proliferative and cytotoxic T-cell responses by "leukemic dendritic cells" derived from blast cells in acute myeloid leukemia. Harrison, B.D., Adams, J.A., Briggs, M., Brereton, M.L., Yin, J.A. Blood (2001) [Pubmed]
  19. CpG-independent synergistic induction of beta-chemokines and a dendritic cell phenotype by orthophosphorothioate oligodeoxynucleotides and granulocyte-macrophage colony-stimulating factor in elutriated human primary monocytes. Wang, J., Alvarez, R., Roderiquez, G., Guan, E., Caldwell, Q., Wang, J., Phelan, M., Norcross, M.A. J. Immunol. (2005) [Pubmed]
  20. Aberrant phenotype and function of myeloid dendritic cells in systemic lupus erythematosus. Ding, D., Mehta, H., McCune, W.J., Kaplan, M.J. J. Immunol. (2006) [Pubmed]
  21. Human monocyte-derived dendritic cells express TLR9 and react directly to the CpG-A oligonucleotide D19. Hoene, V., Peiser, M., Wanner, R. J. Leukoc. Biol. (2006) [Pubmed]
  22. Increased expression of DC-SIGN+IL-12+IL-18+ and CD83+IL-12-IL-18- dendritic cell populations in the colonic mucosa of patients with Crohn's disease. te Velde, A.A., van Kooyk, Y., Braat, H., Hommes, D.W., Dellemijn, T.A., Slors, J.F., van Deventer, S.J., Vyth-Dreese, F.A. Eur. J. Immunol. (2003) [Pubmed]
  23. An optimised biphasic culture system for the generation of functional dendritic cells from patients with acute lymphoblastic leukaemia at presentation and in clinical remission. Blair, A., Rowbottom, A.W., Browne, S.J., Goulden, N.J., Steward, C.G., Oakhill, A., Pamphilon, D.H. Leukemia (2001) [Pubmed]
  24. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. Slukvin, I.I., Vodyanik, M.A., Thomson, J.A., Gumenyuk, M.E., Choi, K.D. J. Immunol. (2006) [Pubmed]
  25. Human lung dendritic cells have an immature phenotype with efficient mannose receptors. Cochand, L., Isler, P., Songeon, F., Nicod, L.P. Am. J. Respir. Cell Mol. Biol. (1999) [Pubmed]
  26. Maturation of human dendritic cells as sulfasalazine target. Matasić, R., Dietz, A.B., Vuk-Pavlović, S. Croat. Med. J. (2001) [Pubmed]
  27. Effect of tumor necrosis factor alpha on mitogen-activated human B cells. Kehrl, J.H., Miller, A., Fauci, A.S. J. Exp. Med. (1987) [Pubmed]
  28. Modulation of signaling via the B cell antigen receptor by CD21, the receptor for C3dg and EBV. Luxembourg, A.T., Cooper, N.R. J. Immunol. (1994) [Pubmed]
  29. Maturation of dendritic cells infected by recombinant adenovirus can be delayed without impact on transgene expression. Dietz, A.B., Bulur, P.A., Brown, C.A., Pankratz, V.S., Vuk-Pavlovic, S. Gene Ther. (2001) [Pubmed]
  30. Detection of anaphylatoxin receptors on CD83+ dendritic cells derived from human skin. Kirchhoff, K., Weinmann, O., Zwirner, J., Begemann, G., Götze, O., Kapp, A., Werfel, T. Immunology (2001) [Pubmed]
  31. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. Yellin, M.J., Sippel, K., Inghirami, G., Covey, L.R., Lee, J.J., Sinning, J., Clark, E.A., Chess, L., Lederman, S. J. Immunol. (1994) [Pubmed]
  32. Integration of activatory and inhibitory signals in human B-cells. Sármay, G., Koncz, G., Gergely, J. Immunol. Lett. (1996) [Pubmed]
  33. CD38 is expressed on human mature monocyte-derived dendritic cells and is functionally involved in CD83 expression and IL-12 induction. Fedele, G., Frasca, L., Palazzo, R., Ferrero, E., Malavasi, F., Ausiello, C.M. Eur. J. Immunol. (2004) [Pubmed]
  34. Expression and function of OX40 ligand on human dendritic cells. Ohshima, Y., Tanaka, Y., Tozawa, H., Takahashi, Y., Maliszewski, C., Delespesse, G. J. Immunol. (1997) [Pubmed]
  35. Vasoactive intestinal peptide synergizes with TNF-alpha in inducing human dendritic cell maturation. Delneste, Y., Herbault, N., Galea, B., Magistrelli, G., Bazin, I., Bonnefoy, J.Y., Jeannin, P. J. Immunol. (1999) [Pubmed]
  36. Extracellular signal-regulated kinase, stress-activated protein kinase/c-Jun N-terminal kinase, and p38mapk are involved in IL-10-mediated selective repression of TNF-alpha-induced activation and maturation of human peripheral blood monocyte-derived dendritic cells. Sato, K., Nagayama, H., Tadokoro, K., Juji, T., Takahashi, T.A. J. Immunol. (1999) [Pubmed]
  37. Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. Papadopoulos, E.J., Sassetti, C., Saeki, H., Yamada, N., Kawamura, T., Fitzhugh, D.J., Saraf, M.A., Schall, T., Blauvelt, A., Rosen, S.D., Hwang, S.T. Eur. J. Immunol. (1999) [Pubmed]
  38. Dendritic cells injected via different routes induce immunity in cancer patients. Fong, L., Brockstedt, D., Benike, C., Wu, L., Engleman, E.G. J. Immunol. (2001) [Pubmed]
  39. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin: involvement of toll-like receptors. Tsuji, S., Matsumoto, M., Takeuchi, O., Akira, S., Azuma, I., Hayashi, A., Toyoshima, K., Seya, T. Infect. Immun. (2000) [Pubmed]
  40. A functional comparison of mature human dendritic cells prepared in fluorinated ethylene-propylene bags or polystyrene flasks. Kurlander, R.J., Tawab, A., Fan, Y., Carter, C.S., Read, E.J. Transfusion (2006) [Pubmed]
  41. A soluble factor(s) released by MRC-5 cells early and late after human cytomegalovirus infection induces maturation of monocyte-derived dendritic cells. Kis, Z., Pallinger, E., Endresz, V., Burian, K., Falus, A., Berencsi, G., Gonczol, E. Arch. Virol. (2006) [Pubmed]
  42. CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Cao, W., Lee, S.H., Lu, J. Biochem. J. (2005) [Pubmed]
  43. Detection of Kaposi's sarcoma herpesvirus DNA sequences in multiple myeloma bone marrow stromal cells. Chauhan, D., Bharti, A., Raje, N., Gustafson, E., Pinkus, G.S., Pinkus, J.L., Teoh, G., Hideshima, T., Treon, S.P., Fingeroth, J.D., Anderson, K.C. Blood (1999) [Pubmed]
WikiGenes - Universities