The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

p-Chlorfenol     4-chlorophenol

Synonyms: p-Chlorophenol, PubChem22009, Applied 3-78, CCRIS 642, CHEMBL57053, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC2877

 

Psychiatry related information on NSC2877

  • Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization [6].
 

High impact information on NSC2877

 

Chemical compound and disease context of NSC2877

 

Biological context of NSC2877

 

Anatomical context of NSC2877

 

Associations of NSC2877 with other chemical compounds

 

Gene context of NSC2877

  • Incubation of acid 1 with 4-chlorophenol or aniline gave adducts that were identified by 1H NMR spectroscopy and GC/MS as 2-(4-chlorophenoxy)-4-(methylthio)butanoic acid and 4-(4-chlorophenoxy)-2-(methylthio)butanoic acid or 2-anilino-4-(methylthio)butanoic acid and 4-anilino-2-(methylthio)butanoic acid, respectively [28].
  • The individual marked strains, Arthrobacter chlorophenolicus A6L (luc-tagged) and Arthrobacter chlorophenolicus A6G (gfp-tagged), were monitored during degradation of 250 microg ml(-1) 4-chlorophenol in pure culture and 175 microg g(-1) 4-chlorophenol in soil microcosms [1].
  • The antibacterial and cytotoxic effects of parachlorophenol (as 35% camphorated PCP and 2% aqueous PCP) were compared directly, using the agar overlay technique [18].
  • Photolysis of 2- and 4-chlorophenol samples in water ice of the initial concentrations 10(-7) to 10(-2) mol L(-1) is reported [29].
  • The exposure of both GAC to ozone at room temperature decreased their ability to adsorb P, PNP, and PCP [30].
 

Analytical, diagnostic and therapeutic context of NSC2877

References

  1. Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil. Elväng, A.M., Westerberg, K., Jernberg, C., Jansson, J.K. Environ. Microbiol. (2001) [Pubmed]
  2. Laccase-mediated detoxification of phenolic compounds. Bollag, J.M., Shuttleworth, K.L., Anderson, D.H. Appl. Environ. Microbiol. (1988) [Pubmed]
  3. Influence of growth rate and nutrient limitation on the gross cellular composition of Pseudomonas aeruginosa and its resistance to 3- and 4-chlorophenol. Gilbert, P., Brown, M.R. J. Bacteriol. (1978) [Pubmed]
  4. Monitoring of Desulfitobacterium frappieri PCP-1 in pentachlorophenol-degrading anaerobic soil slurry reactors. Lanthier, M., Villemur, R., Lépine, F., Bisaillon, J.G., Beaudet, R. Environ. Microbiol. (2000) [Pubmed]
  5. Effect of R-plasmid RP1 and nutrient depletion on the gross cellular composition of Escherichia coli and its resistance to some uncoupling phenols. Gilbert, P., Brown, M.R. J. Bacteriol. (1978) [Pubmed]
  6. Photochemical degradation and mineralization of 4-chlorophenol. Catalkaya, E.C., Bali, U., Sengül, F. Environmental science and pollution research international. (2003) [Pubmed]
  7. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation. Ledger, T., Pieper, D.H., González, B. Appl. Environ. Microbiol. (2006) [Pubmed]
  8. Desulfitobacterium hafniense is present in a high proportion within the biofilms of a high-performance pentachlorophenol-degrading, methanogenic fixed-film reactor. Lanthier, M., Juteau, P., Lépine, F., Beaudet, R., Villemur, R. Appl. Environ. Microbiol. (2005) [Pubmed]
  9. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Nordin, K., Unell, M., Jansson, J.K. Appl. Environ. Microbiol. (2005) [Pubmed]
  10. Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Bouchard, B., Beaudet, R., Villemur, R., McSween, G., Lépine, F., Bisaillon, J.G. Int. J. Syst. Bacteriol. (1996) [Pubmed]
  11. Growth kinetics of Pseudomonas putida in cometabolism of phenol and 4-chlorophenol in the presence of a conventional carbon source. Wang, S.J., Loh, K.C. Biotechnol. Bioeng. (2000) [Pubmed]
  12. Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain. Fava, F., Armenante, P.M., Kafkewitz, D. Lett. Appl. Microbiol. (1995) [Pubmed]
  13. Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. Bae, H.S., Lee, J.M., Lee, S.T. FEMS Microbiol. Lett. (1996) [Pubmed]
  14. An inducible Streptomyces gene cluster involved in aromatic compound metabolism. Park, H.J., Kim, E.S. FEMS Microbiol. Lett. (2003) [Pubmed]
  15. Anaphylaxis to chlorhexidine. Case report. Implication of immunoglobulin E antibodies and identification of an allergenic determinant. Pham, N.H., Weiner, J.M., Reisner, G.S., Baldo, B.A. Clin. Exp. Allergy (2000) [Pubmed]
  16. Kinetics and mechanism of photoactivated periodate reaction with 4-chlorophenol in acidic solution. Chia, L.H., Tang, X., Weavers, L.K. Environ. Sci. Technol. (2004) [Pubmed]
  17. Assessment of genotoxicity of 14 chemical agents used in dental practice: ability to induce chromosome aberrations in Syrian hamster embryo cells. Hagiwara, M., Watanabe, E., Barrett, J.C., Tsutsui, T. Mutat. Res. (2006) [Pubmed]
  18. A comparison of the antibacterial and cytotoxic effects of parachlorophenol. Messer, H.H., Feigal, R.J. J. Dent. Res. (1985) [Pubmed]
  19. Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Heipieper, H.J., Keweloh, H., Rehm, H.J. Appl. Environ. Microbiol. (1991) [Pubmed]
  20. Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. Tamburro, A., Robuffo, I., Heipieper, H.J., Allocati, N., Rotilio, D., Di Ilio, C., Favaloro, B. FEMS Microbiol. Lett. (2004) [Pubmed]
  21. Effects of parachlorophenol and camphorated parachlorophenol on the phagocytic activities of a murine macrophage cell line (RAW264.7). Barid, I., Nawawi, S., Sosroseno, W. Journal of endodontics. (2002) [Pubmed]
  22. In vitro effect of parachlorophenol and camphorated parachlorophenol on macrophages. Llamas, R., Segura, J.J., Jiménez-Rubio, A., Jiménez-Planas, A. Journal of endodontics. (1997) [Pubmed]
  23. Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Aelion, C.M., Swindoll, C.M., Pfaender, F.K. Appl. Environ. Microbiol. (1987) [Pubmed]
  24. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Boyd, S.A., Shelton, D.R. Appl. Environ. Microbiol. (1984) [Pubmed]
  25. Separating surface and solvent effects and the notion of critical adsorption energy in the adsorption of phenolic compounds by activated carbons. Carrott, P.J., Mourão, P.A., Ribeiro Carrott, M.M., Gonçalves, E.M. Langmuir : the ACS journal of surfaces and colloids. (2005) [Pubmed]
  26. Structural evolution of a two-component organogel. Singh, M., Tan, G., Agarwal, V., Fritz, G., Maskos, K., Bose, A., John, V., McPherson, G. Langmuir : the ACS journal of surfaces and colloids. (2004) [Pubmed]
  27. Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles. Carralero, V., Mena, M.L., Gonzalez-Cort??s, A., Y????ez-Sede??o, P., Pingarr??n, J.M. Biosensors & bioelectronics. (2006) [Pubmed]
  28. Thietanium ion formation from the food mutagen 2-chloro-4-(methylthio)butanoic acid. Jolivette, L.J., Kende, A.S., Anders, M.W. Chem. Res. Toxicol. (1998) [Pubmed]
  29. Environmental ice photochemistry: monochlorophenols. Klánová, J., Klán, P., Nosek, J., Holoubek, I. Environ. Sci. Technol. (2003) [Pubmed]
  30. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. Alvarez, P.M., García-Araya, J.F., Beltrán, F.J., Masa, F.J., Medina, F. Journal of colloid and interface science. (2005) [Pubmed]
  31. Structures of the monofluoro- and monochlorophenols at low temperature and high pressure. Oswald, I.D., Allan, D.R., Motherwell, W.D., Parsons, S. Acta Crystallogr., B (2005) [Pubmed]
  32. Simultaneous determination of paracetamol, chlorzoxazone, and related impurities 4-aminophenol, 4'-chloroacetanilide, and p-chlorophenol in pharmaceutical preparations by high-performance liquid chromatography. Ali, M.S., Rafiuddin, S., Ghori, M., Kahtri, A.R. Journal of AOAC International (2007) [Pubmed]
  33. Automated sequencing batch bioreactor under extreme peaks of 4-chlorophenol. Bultrón, G., Schoeb, M.E., Moreno, J. Water Sci. Technol. (2003) [Pubmed]
  34. Epifluorescence microscope methods for bacterial enumeration in a 4-chlorophenol degrading consortium. Pacheco, C.C., Alves, C.C., Barreiros, L., Castro, P.M., Teixeira, P.C. Biotechnol. Lett. (2003) [Pubmed]
  35. Photocatalytic decomposition of 4-chlorophenol over oxide catalysts. Hügül, M., Boz, I., Apak, R. Journal of hazardous materials. (1999) [Pubmed]
 
WikiGenes - Universities