The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

SNORD12C  -  small nucleolar RNA, C/D box 12C

Homo sapiens

Synonyms: E2, E2-1, E3, RNU106, SNORD106, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SNORD106

  • In particular, there was no significant difference between the two groups in the frequency of apo E2 homozygosity, a condition that is associated with type III hyperlipoproteinemia [1].
  • However, all E2 homozygote survivors of myocardial infarction had hyperlipoproteinemia type III (cholesterol 269 +/- 29 mg/dl; triglyceride 419 +/- 150 mg/dl; age 54 +/- 14 years; N = 5) [1].
  • During adenovirus infection, there is induction of a form of E2F that binds cooperatively to the pair of sites in the E2 control region [2].
  • After separation from the low-molecular-weight protein, colicin E2 retained the original in vivo killing activity, and in addition showed a high activity in vitro in cleaving various DNA molecules, such as a ColE1 hybrid plasmid and DNAs from Escherichia coli, lambda phage, chiX174 phage, and simian virus 40 [3].
  • Herpes simplex virus 1 mutant in which the ICP0 HUL-1 E3 ubiquitin ligase site is disrupted stabilizes cdc34 but degrades D-type cyclins and exhibits diminished neurotoxicity [4].
 

Psychiatry related information on SNORD106

  • Apolipoprotein E (apoE) and its three major alleles (APOE2, E3, and E4) have been implicated in Alzheimer's disease and other neurological disorders [5].
  • Molecular epidemiological research has identified the association of a common apolipoprotein E (apo E) isoform (E4 as opposed to E3), with risk both of coronary artery disease and of Alzheimer dementia [6].
  • The patients with E4/4 also showed lowest scores on delayed memory tests and differed from E3/3, 3/2 patients in the list learning test (< 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)[7]
  • E1/E2 dimers and the HCV-LPs of 1b did not bind CD81-LEL, consistent with the notion that CD81 recognition by E2 is strain-specific and does not correlate with permissiveness of infection [8].
  • In men, there was a significant correlation between systolic blood pressure and alcohol consumption in the E2/3 phenotype (rs = 0.71, P < .01) and in the E3/3 phenotype (rs = 0.25, P < .01), but not in the E4/3 phenotype (rs = 0.03, NS) [9].
 

High impact information on SNORD106

  • We report that, at limiting E1 and E2 levels, the enhancer proteins GAL4-VP16 and GAL4-p53(1-73) stimulate BPV in vitro DNA replication [10].
  • For papillomavirus DNA replication, the E2 enhancer protein cooperatively assists in binding of the E1 helicase to the origin [10].
  • The adenovirus type 2 encoded protein E3/19K binds to human histocompatibility class I antigens (HLA) [11].
  • Treatment of cells with 100 microM anisomycin inhibits 99.6% of protein synthesis and substantially depresses (by 20--200 fold) the levels of the conventional early mRNAs from regions E1A, E1B, E2, E3 and E4 [12].
  • Each E1 activity is specified by a domain: an adenylation domain resembling bacterial adenylating enzymes, an E1-specific domain organized around the catalytic cysteine, and a domain involved in E2 recognition resembling ubiquitin [13].
 

Chemical compound and disease context of SNORD106

 

Biological context of SNORD106

  • The primary structure of apolipoprotein E (apo E) was investigated in seven type III hyperlipoproteinemic patients with the apo E-2/2 phenotype [19].
  • At baseline, the apo E 2/3 genotype was associated with the lowest, and apo E 3/4 and E4/4 with the highest low-density liporpotein (LDL) cholesterol and apo B levels in men and women of both races, while female (not male) carriers of apo E3 had higher high-density lipoprotein (HDL) cholesterol levels than carriers of other genotypes [20].
  • Although RING finger proteins constitute an important family of E3 ligases, only a few post-transcriptional modifications, including phosphorylation, proline hydroxylation and glycosylation, are known to function as recognition signals for E3 [21].
  • Competition experiments revealed that E2F did not recognize and bind to the E1B, E3, E4, or major late promoter sequences [22].
  • In one class of E3 ubiquitin ligases, the catalytic domain contains a zinc-binding RING finger motif [23].
 

Anatomical context of SNORD106

  • One of these patients had an enzymatically demonstrable deficiency in the E2 dihydrolipoyl transacetylase segment of the complex and very low observable E2 protein component on Western blotting of fibroblast proteins [24].
  • We have detected a HeLa cell factor, termed E2 promoter binding factor (E2F), that appears to mediate the transcriptional stimulation of the viral E2 promoter [22].
  • We have previously shown that a major M2"a" antigen is the E2 component of the pyruvate dehydrogenase multienzyme complex located within mitochondria [25].
  • Peripheral blood T-cell responses to E2/X are thus strongly associated with early PBC [26].
  • Injection of the human E1, E2, and E3 genes into Xenopus oocytes generated sequence-specific transcripts of the approximate sizes of the respective snoRNAs [27].
 

Associations of SNORD106 with chemical compounds

  • His very low-density lipoprotein contained approximately five times more apo E2 (136 Arg----Ser) than apo E2 (158 Arg----Cys), as determined by cysteamine treatment and peptide mapping [19].
  • As in normal persons with phenotype E3/3, the apolipoprotein E of affected members appears to have a single residue of cysteine [28].
  • This is the first time that defects in either the E2 or the X component of the pyruvate dehydrogenase complex have been observed in the human population [24].
  • The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity [29].
  • Moreover, incubation of nNOS with a purified system containing an E1 ubiquitin-activating enzyme, an E2 ubiquitin carrier protein conjugating enzyme (UbcH5a), CHIP, glutathione S-transferase-tagged ubiquitin, and an ATP-generating system leads to the ubiquitylation of nNOS [30].
 

Enzymatic interactions of SNORD106

  • Additionally, we provide biochemical and in vivo evidence that TRAF6 serves as an E3 to directly ubiquitinate NEMO [31].
 

Other interactions of SNORD106

  • Consistent with previous studies (Kahyo, T., Nishida, T., and Yasuda, H. (2001) Mol. Cell 8, 713-718), the RING finger-like domain of the SUMO-E3 was required for ligase activity [32].
  • Staring binds and recruits the brain-enriched E2 ubiquitin-conjugating enzyme UbcH8 to syntaxin 1 and facilitates the ubiquitination and proteasome-dependent degradation of syntaxin 1 [33].
  • Structural analysis of Siah1-Siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex [34].
  • We conclude that the ICP0 HUL-1 domain acts in infected cells to degrade cdc34 and that this function requires the interaction of cdc34 with sequences in exons 2 and 3 but does not involve the HUL-2 RING finger E3 domain [4].
  • The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type [35].
 

Analytical, diagnostic and therapeutic context of SNORD106

References

  1. Apolipoprotein E phenotypes in patients with myocardial infarction. Utermann, G., Hardewig, A., Zimmer, F. Hum. Genet. (1984) [Pubmed]
  2. An adenovirus early region 4 gene product is required for induction of the infection-specific form of cellular E2F activity. Hardy, S., Engel, D.A., Shenk, T. Genes Dev. (1989) [Pubmed]
  3. Colicin E2 is DNA endonuclease. Schaller, K., Nomura, M. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  4. Herpes simplex virus 1 mutant in which the ICP0 HUL-1 E3 ubiquitin ligase site is disrupted stabilizes cdc34 but degrades D-type cyclins and exhibits diminished neurotoxicity. Hagglund, R., Roizman, B. J. Virol. (2003) [Pubmed]
  5. Human apolipoprotein E2, E3, and E4 isoform-specific transgenic mice: human-like pattern of glial and neuronal immunoreactivity in central nervous system not observed in wild-type mice. Xu, P.T., Schmechel, D., Rothrock-Christian, T., Burkhart, D.S., Qiu, H.L., Popko, B., Sullivan, P., Maeda, N., Saunders, A.M., Roses, A.D., Gilbert, J.R. Neurobiol. Dis. (1996) [Pubmed]
  6. High-throughput method for determination of apolipoprotein E genotypes with use of restriction digestion analysis by microplate array diagonal gel electrophoresis. Bolla, M.K., Haddad, L., Humphries, S.E., Winder, A.F., Day, I.N. Clin. Chem. (1995) [Pubmed]
  7. Volumes of hippocampus, amygdala and frontal lobe in Alzheimer patients with different apolipoprotein E genotypes. Lehtovirta, M., Laakso, M.P., Soininen, H., Helisalmi, S., Mannermaa, A., Helkala, E.L., Partanen, K., Ryynänen, M., Vainio, P., Hartikainen, P. Neuroscience (1995) [Pubmed]
  8. Structural features of envelope proteins on hepatitis C virus-like particles as determined by anti-envelope monoclonal antibodies and CD81 binding. Triyatni, M., Vergalla, J., Davis, A.R., Hadlock, K.G., Foung, S.K., Liang, T.J. Virology (2002) [Pubmed]
  9. Apolipoprotein E phenotype determines the effect of alcohol on blood pressure in middle-aged men. Kauma, H., Savolainen, M.J., Rantala, A.O., Lilja, M., Kervinen, K., Reunanen, A., Kesäniemi, Y.A. Am. J. Hypertens. (1998) [Pubmed]
  10. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Li, R., Botchan, M.R. Cell (1993) [Pubmed]
  11. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Burgert, H.G., Kvist, S. Cell (1985) [Pubmed]
  12. Control of adenovirus early gene expression: a class of immediate early products. Lewis, J.B., Mathews, M.B. Cell (1980) [Pubmed]
  13. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Walden, H., Podgorski, M.S., Schulman, B.A. Nature (2003) [Pubmed]
  14. 2-Oxoacid dehydrogenase multienzyme complexes in the halophilic Archaea? Gene sequences and protein structural predictions. Jolley, K.A., Maddocks, D.G., Gyles, S.L., Mullan, Z., Tang, S.L., Dyall-Smith, M.L., Hough, D.W., Danson, M.J. Microbiology (Reading, Engl.) (2000) [Pubmed]
  15. E2 transacylase-deficient (type II) maple syrup urine disease. Aberrant splicing of E2 mRNA caused by internal intronic deletions and association with thiamine-responsive phenotype. Chuang, J.L., Cox, R.P., Chuang, D.T. J. Clin. Invest. (1997) [Pubmed]
  16. Structurally related class I and class II receptor protein tyrosine kinases are down-regulated by the same E3 protein coded for by human group C adenoviruses. Kuivinen, E., Hoffman, B.L., Hoffman, P.A., Carlin, C.R. J. Cell Biol. (1993) [Pubmed]
  17. Biochemical analysis of Parkinson's disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hampe, C., Ardila-Osorio, H., Fournier, M., Brice, A., Corti, O. Hum. Mol. Genet. (2006) [Pubmed]
  18. Do urinary estrogen metabolites reflect the differences in breast cancer risk between Singapore Chinese and United States African-American and white women? Ursin, G., Wilson, M., Henderson, B.E., Kolonel, L.N., Monroe, K., Lee, H.P., Seow, A., Yu, M.C., Stanczyk, F.Z., Gentzschein, E. Cancer Res. (2001) [Pubmed]
  19. Apolipoprotein E2-Christchurch (136 Arg----Ser). New variant of human apolipoprotein E in a patient with type III hyperlipoproteinemia. Wardell, M.R., Brennan, S.O., Janus, E.D., Fraser, R., Carrell, R.W. J. Clin. Invest. (1987) [Pubmed]
  20. Association of apolipoprotein E polymorphism with blood lipids and maximal oxygen uptake in the sedentary state and after exercise training in the HERITAGE family study. Leon, A.S., Togashi, K., Rankinen, T., Després, J.P., Rao, D.C., Skinner, J.S., Wilmore, J.H., Bouchard, C. Metab. Clin. Exp. (2004) [Pubmed]
  21. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Yamanaka, K., Ishikawa, H., Megumi, Y., Tokunaga, F., Kanie, M., Rouault, T.A., Morishima, I., Minato, N., Ishimori, K., Iwai, K. Nat. Cell Biol. (2003) [Pubmed]
  22. Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Kovesdi, I., Reichel, R., Nevins, J.R. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  23. E3 ubiquitin ligase activity of the trifunctional ARD1 (ADP-ribosylation factor domain protein 1). Vichi, A., Payne, D.M., Pacheco-Rodriguez, G., Moss, J., Vaughan, M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  24. Defects in the E2 lipoyl transacetylase and the X-lipoyl containing component of the pyruvate dehydrogenase complex in patients with lactic acidemia. Robinson, B.H., MacKay, N., Petrova-Benedict, R., Ozalp, I., Coskun, T., Stacpoole, P.W. J. Clin. Invest. (1990) [Pubmed]
  25. Identification and analysis of the major M2 autoantigens in primary biliary cirrhosis. Fussey, S.P., Guest, J.R., James, O.F., Bassendine, M.F., Yeaman, S.J. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  26. T-cell responses to the components of pyruvate dehydrogenase complex in primary biliary cirrhosis. Jones, D.E., Palmer, J.M., James, O.F., Yeaman, S.J., Bassendine, M.F., Diamond, A.G. Hepatology (1995) [Pubmed]
  27. Genes for E1, E2, and E3 small nucleolar RNAs. Nag, M.K., Thai, T.T., Ruff, E.A., Selvamurugan, N., Kunnimalaiyaan, M., Eliceiri, G.L. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  28. Atypical familial dysbetalipoproteinemia associated with apolipoprotein phenotype E3/3. Havel, R.J., Kotite, L., Kane, J.P., Tun, P., Bersot, T. J. Clin. Invest. (1983) [Pubmed]
  29. Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. Li, Z., Cao, R., Wang, M., Myers, M.P., Zhang, Y., Xu, R.M. J. Biol. Chem. (2006) [Pubmed]
  30. Ubiquitylation of neuronal nitric-oxide synthase by CHIP, a chaperone-dependent E3 ligase. Peng, H.M., Morishima, Y., Jenkins, G.J., Dunbar, A.Y., Lau, M., Patterson, C., Pratt, W.B., Osawa, Y. J. Biol. Chem. (2004) [Pubmed]
  31. Site-specific Lys-63-linked Tumor Necrosis Factor Receptor-associated Factor 6 Auto-ubiquitination Is a Critical Determinant of I{kappa}B Kinase Activation. Lamothe, B., Besse, A., Campos, A.D., Webster, W.K., Wu, H., Darnay, B.G. J. Biol. Chem. (2007) [Pubmed]
  32. PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. Nishida, T., Yasuda, H. J. Biol. Chem. (2002) [Pubmed]
  33. Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. Chin, L.S., Vavalle, J.P., Li, L. J. Biol. Chem. (2002) [Pubmed]
  34. Structural analysis of Siah1-Siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex. Santelli, E., Leone, M., Li, C., Fukushima, T., Preece, N.E., Olson, A.J., Ely, K.R., Reed, J.C., Pellecchia, M., Liddington, R.C., Matsuzawa, S. J. Biol. Chem. (2005) [Pubmed]
  35. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T.K., Melchior, F. Nat. Struct. Mol. Biol. (2004) [Pubmed]
  36. Heterogeneity of tau proteins in Alzheimer's disease. Evidence for increased expression of an isoform and preferential distribution of a phosphorylated isoform in neurites. Liu, W.K., Dickson, D.W., Yen, S.H. Am. J. Pathol. (1993) [Pubmed]
  37. Geographic distribution and evolution of Ross River virus in Australia and the Pacific Islands. Sammels, L.M., Coelen, R.J., Lindsay, M.D., Mackenzie, J.S. Virology (1995) [Pubmed]
  38. The composition of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Does a unifying model exist for the complexes from gram-negative bacteria? Bosma, H.J., de Kok, A., Westphal, A.H., Veeger, C. Eur. J. Biochem. (1984) [Pubmed]
 
WikiGenes - Universities