The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Neurosecretion

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Neurosecretion

 

Psychiatry related information on Neurosecretion

 

High impact information on Neurosecretion

  • MARCKS is a specific protein kinase C (PKC) substrate that binds both calmodulin and actin and is phosphorylated during phagocyte activation, neurosecretion, and growth factor-dependent mitogenesis [7].
  • Here we show that CFTR is regulated by an epithelially expressed syntaxin (syntaxin 1A), a membrane protein that also modulates neurosecretion and calcium-channel gating in brain [8].
  • This mode of transmitter action may explain the ability of noradrenaline and GABA to presynaptically inhibit Ca2+-dependent neurosecretion from DRG sensory neurones [9].
  • Sulfonylurea-sensitive adenosine triphosphate (ATP)-regulated potassium (KATP) channels are present in brain cells and play a role in neurosecretion at nerve terminals [10].
  • These findings suggest that hypothalamic growth hormone-releasing factor may regulate its own neurosecretion through an "ultrashort-loop" negative feedback mechanism and may have important neurotransmitter and neuromodulatory functions in the brain [11].
 

Chemical compound and disease context of Neurosecretion

 

Biological context of Neurosecretion

 

Anatomical context of Neurosecretion

 

Associations of Neurosecretion with chemical compounds

 

Gene context of Neurosecretion

  • These results suggest that Hrs is involved in regulation of neurosecretion through interaction with SNAP-25 [29].
  • 7. Thus Q-channels are present on a subset of the neurohypophysial terminals where, in combination with N- and L-channels, they control AVP but not OT peptide neurosecretion [30].
  • Since neuronal NO synthase expression was not modified, we conclude that the perturbed free radical metabolism associated with the SOD1 mutation is likely to trap NO, and thereby alter neurosecretion, a mechanism that can be exacerbated in specific physiopathological conditions [31].
  • In vertebrates, the appropriate neurosecretion of the decapeptide gonadotropin-releasing hormone (GnRH) plays a critical role in the progression of puberty [32].
  • Interaction of CIRL with a specific presynaptic neurotoxin and with a component of the docking-fusion machinery suggests its role in regulation of neurosecretion [33].

References

  1. Hypoxic enhancement of quantal catecholamine secretion. Evidence for the involvement of amyloid beta-peptides. Taylor, S.C., Batten, T.F., Peers, C. J. Biol. Chem. (1999) [Pubmed]
  2. Effects of diltiazem (a calcium antagonist) on neurosecretion and vascular responsiveness in hypertension. Masuyama, Y., Tsuda, K., Kuchii, M., Nishio, I. Journal of hypertension. Supplement : official journal of the International Society of Hypertension. (1985) [Pubmed]
  3. Effect of lithium chloride on the neurosecretory system of the rat hypothalamus. Yavorskii, A.N., Samoilov, N.N., Rychko, A.V. Neurosci. Behav. Physiol. (1979) [Pubmed]
  4. Peptidergic mechanisms of hyperthermia-evoked convulsions in rats in early postnatal ontogenesis. Chepurnova, N.E., Ponomarenko, A.A., Chepurnov, S.A. Neurosci. Behav. Physiol. (2002) [Pubmed]
  5. Tetrahydroaminoacridine (tacrine) stimulates neurosecretion at mammalian motor endplates. Thesleff, S., Sellin, L.C., Tågerud, S. Br. J. Pharmacol. (1990) [Pubmed]
  6. Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin. Kalra, S.P., Kalra, P.S. Endocrine (2003) [Pubmed]
  7. MacMARCKS, a novel member of the MARCKS family of protein kinase C substrates. Li, J., Aderem, A. Cell (1992) [Pubmed]
  8. Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms. Naren, A.P., Nelson, D.J., Xie, W., Jovov, B., Pevsner, J., Bennett, M.K., Benos, D.J., Quick, M.W., Kirk, K.L. Nature (1997) [Pubmed]
  9. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Holz, G.G., Rane, S.G., Dunlap, K. Nature (1986) [Pubmed]
  10. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Amoroso, S., Schmid-Antomarchi, H., Fosset, M., Lazdunski, M. Science (1990) [Pubmed]
  11. Growth hormone-releasing factor: direct effects on growth hormone, glucose, and behavior via the brain. Tannenbaum, G.S. Science (1984) [Pubmed]
  12. Effects of reducing agents on glutathione metabolism and the function of carotid body chemoreceptor cells. Gonzalez, C., Sanz-Alyayate, G., Agapito, M.T., Obeso, A. Biol. Chem. (2004) [Pubmed]
  13. Role of substance P and neurotensin in the regulation of neurosecretion and vascular responsiveness in hypertension. Tsuda, K., Shima, H., Ura, M., Takeda, J., Kimura, K., Nishio, I., Masuyama, Y. Journal of hypertension. Supplement : official journal of the International Society of Hypertension. (1988) [Pubmed]
  14. Chronic hyperalgesia and skin warming caused by sensitized C nociceptors. Cline, M.A., Ochoa, J., Torebjörk, H.E. Brain (1989) [Pubmed]
  15. Analysis of point mutants in the Caenorhabditis elegans vesicular acetylcholine transporter reveals domains involved in substrate translocation. Zhu, H., Duerr, J.S., Varoqui, H., McManus, J.R., Rand, J.B., Erickson, J.D. J. Biol. Chem. (2001) [Pubmed]
  16. Expression of native alpha3beta4* neuronal nicotinic receptors: binding and functional studies investigating turnover of surface and intracellular receptor populations. Free, R.B., McKay, S.B., Gottlieb, P.D., Boyd, R.T., McKay, D.B. Mol. Pharmacol. (2005) [Pubmed]
  17. Regulators of G protein signaling attenuate the G protein-mediated inhibition of N-type Ca channels. Melliti, K., Meza, U., Fisher, R., Adams, B. J. Gen. Physiol. (1999) [Pubmed]
  18. Taipoxin induces synaptic vesicle exocytosis and disrupts the interaction of synaptophysin I with VAMP2. Bonanomi, D., Pennuto, M., Rigoni, M., Rossetto, O., Montecucco, C., Valtorta, F. Mol. Pharmacol. (2005) [Pubmed]
  19. SNIP, a novel SNAP-25-interacting protein implicated in regulated exocytosis. Chin, L.S., Nugent, R.D., Raynor, M.C., Vavalle, J.P., Li, L. J. Biol. Chem. (2000) [Pubmed]
  20. Regulation of cyclic adenosine 3',5'-monophosphate signaling and pulsatile neurosecretion by Gi-coupled plasma membrane estrogen receptors in immortalized gonadotropin-releasing hormone neurons. Navarro, C.E., Abdul Saeed, S., Murdock, C., Martinez-Fuentes, A.J., Arora, K.K., Krsmanovic, L.Z., Catt, K.J. Mol. Endocrinol. (2003) [Pubmed]
  21. SV2A and SV2C contain a unique synaptotagmin-binding site. Schivell, A.E., Mochida, S., Kensel-Hammes, P., Custer, K.L., Bajjalieh, S.M. Mol. Cell. Neurosci. (2005) [Pubmed]
  22. Nitric oxide implication in the control of neurosecretion by chromaffin cells. Oset-Gasque, M.J., Parramón, M., Hortelano, S., Boscá, L., González, M.P. J. Neurochem. (1994) [Pubmed]
  23. Rapid sequestration and degradation of somatostatin analogues by isolated brain microvessels. Pardridge, W.M., Eisenberg, J., Yamada, T. J. Neurochem. (1985) [Pubmed]
  24. Immunoreactive vasopressin and oxytocin: concentration in individual human hypothalamic nuclei. George, J.M. Science (1978) [Pubmed]
  25. Dependence of intracellular signaling and neurosecretion on phospholipase D activation in immortalized gonadotropin-releasing hormone neurons. Zheng, L., Krsmanovic, L.Z., Vergara, L.A., Catt, K.J., Stojilkovic, S.S. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  26. Serotonin (5-HT) receptor subtypes mediate specific modes of 5-HT-induced signaling and regulation of neurosecretion in gonadotropin-releasing hormone neurons. Wada, K., Hu, L., Mores, N., Navarro, C.E., Fuda, H., Krsmanovic, L.Z., Catt, K.J. Mol. Endocrinol. (2006) [Pubmed]
  27. Experimental uremia affects hypothalamic amino acid neurotransmitter milieu. Schaefer, F., Vogel, M., Kerkhoff, G., Woitzik, J., Daschner, M., Mehls, O. J. Am. Soc. Nephrol. (2001) [Pubmed]
  28. Dopaminergic modulation of neuromuscular transmission in the prawn. Miller, M.W., Parnas, H., Parnas, I. J. Physiol. (Lond.) (1985) [Pubmed]
  29. Hrs interacts with SNAP-25 and regulates Ca(2+)-dependent exocytosis. Kwong, J., Roundabush, F.L., Hutton Moore, P., Montague, M., Oldham, W., Li, Y., Chin, L.S., Li, L. J. Cell. Sci. (2000) [Pubmed]
  30. Role of Q-type Ca2+ channels in vasopressin secretion from neurohypophysial terminals of the rat. Wang, G., Dayanithi, G., Kim, S., Hom, D., Nadasdi, L., Kristipati, R., Ramachandran, J., Stuenkel, E.L., Nordmann, J.J., Newcomb, R., Lemos, J.R. J. Physiol. (Lond.) (1997) [Pubmed]
  31. Oxidative stress and a murine superoxide dismutase-1 mutation promoting amyotrophic lateral sclerosis alter neurosecretion in the hypothalamo-neurohypophyseal axis. Lutz-Bucher, B., González de Aguilar, J.L., René, F., Sée, V., Gordon, J.W., Loeffler, J. Neuroendocrinology (1999) [Pubmed]
  32. IGF-1 in the brain as a regulator of reproductive neuroendocrine function. Daftary, S.S., Gore, A.C. Exp. Biol. Med. (Maywood) (2005) [Pubmed]
  33. alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Krasnoperov, V.G., Bittner, M.A., Beavis, R., Kuang, Y., Salnikow, K.V., Chepurny, O.G., Little, A.R., Plotnikov, A.N., Wu, D., Holz, R.W., Petrenko, A.G. Neuron (1997) [Pubmed]
 
WikiGenes - Universities