The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Triacetate     (3Z)-4,6,6-trihydroxyhexa- 3,5-dien-2-one

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Triacetate

  • Mechanism of selective inhibition of human immunodeficiency virus by ingenol triacetate [1].
  • The target nucleosides and intermediate heterocycles were inactive against P388 and L1210 lymphocytic leukemia in mice, except nucleoside 17 (NSC-378066) and its triacetate 29 (NSC-382021) [2].
  • In the present study, a sterile filtrate of Pseudomonas maltophilia grown from standard bicarbonate dialysis fluid was used to test the permeability of various dialyzer membranes (regenerated cellulose, cellulose triacetate, polyacrylonitrile, polysulfone and polyamide) to TNF alpha-inducing bacterial substances [3].
  • To characterize the mechanism of action of 4-HNE, we assessed genotoxic damage by 4-HNE and by 4-HNE triacetate [4-HNE(Ac)(3)] using the mouse lymphoma assay that measures the mutant frequency in the Tk gene [4].
  • The in vitro transfer of cytokine-inducing substances (CIS) across cellulose triacetate and polyacrylonitrile hollow-fiber high-flux hemodialyzers was studied using culture filtrates of gram-negative bacteria isolated from hemodialysis center environments [5].

High impact information on Triacetate

  • Vancomycin is significantly cleared during dialysis with cellulose triacetate membranes, and its clearance is dependent on membrane surface area [6].
  • Influence of cellulose triacetate hemodialyzers on vancomycin pharmacokinetics [6].
  • RESULTS: PMNL from patients dialyzed with polysulphone (PS) or cuprophane (CU) membranes showed higher PMA-induced respiratory burst activity compared with those exposed to substituted cellulose (cellulose acetate, cellulose triacetate, CA/CT) membranes, regardless of dialyzer reuse [7].
  • With the exception of triacetate 2a, the triesters failed to significantly enhance bioavailability [8].
  • The direct electrochemistry of cytochrome c at a gold electrode was investigated by cyclic voltammetry using, as promoters, microperoxidase (the haem-undecapeptide obtained by hydrolysis of cytochrome c), Fe(III)-protoporphyrin IX or protoporphyrin-IX, all entrapped in a cellulose triacetate membrane [9].

Chemical compound and disease context of Triacetate


Biological context of Triacetate


Anatomical context of Triacetate


Associations of Triacetate with other chemical compounds


Gene context of Triacetate

  • The relative contribution of adsorption to the reduction in cytokines was 100% for TNF-alpha for all membranes, between 53 (cellulose triacetate) and 83% (polyacrylonitrile) for IL-6, and for IL-8 between 0 (polysulfone) and 100% (polyacrylonitrile) [27].
  • The plasma protein layer reduced the penetration of CIS significantly only for polysulphone (IL-1 alpha: PS, time 60: 4747 +/- 1822 versus 880 +/- 525 pg/ml, P < 0.05; modified cellulose triacetate, time 60 min: 1632 +/- 531 pg/ml versus 930 +/- 326 pg/ml) [28].
  • CONCLUSION: No significant epoetin-sparing effect was identified through the use of the high-flux polysulfone HF80LS membrane over the modified cellulose triacetate SF170E membrane [29].
  • In the present paper the electrochemical behaviour of the undecapeptide from cytochrome c (called microperoxidase) tightly entrapped in cellulose triacetate membrane is reported; its utilization as 'solid-state' promoter in the electrochemistry of soluble metalloproteins is presented [30].
  • The average in vivo PLP clearance for six patients on standard hemodialysis increased by more than 50%, from 86 +/- 61.7 mL/min using a cuprophan membrane to 173 +/- 90.2 mL/min using a cellulose triacetate dialyzer, at average blood flows of 375 mL/min (P < 0.05) [31].

Analytical, diagnostic and therapeutic context of Triacetate

  • Three different hemodialysis membranes were used: cuprophan, polyacrylonitrile, and cellulose triacetate [32].
  • INTERVENTIONS: High-volume, postdilutional continuous venovenous hemofiltration, with a standard blood flow rate of 200 mL/min and an ultrafiltrate volume of 100 L in 24 hrs, was performed with a highly permeable, large-surface cellulose triacetate membrane [33].
  • The relative cross-reactivities of the antiserum with Tetra-Ac-NIV, acetyl T-2 toxin, and scirpenol triacetate, which were determined by the competitive radioimmunoassay, were 1, 0.78, and 0.56, respectively [34].
  • In contrast, using the cellulose triacetate membrane under investigation, beta 2-M removal is diminished when ultrafiltration rates are increased [35].
  • Cellulose triacetate film strips, enabled simple handling when coated with an alpha-amylase-gelatin mixture, accomplishing a high degree of durability during consecutive immersions into reaction media [36].


  1. Mechanism of selective inhibition of human immunodeficiency virus by ingenol triacetate. Fujiwara, M., Ijichi, K., Tokuhisa, K., Katsuura, K., Shigeta, S., Konno, K., Wang, G.Y., Uemura, D., Yokota, T., Baba, M. Antimicrob. Agents Chemother. (1996) [Pubmed]
  2. Synthesis and antitumor activity of fluorine-substituted 4-amino-2(1H)-pyridinones and their nucleosides. 3-Deazacytosines. McNamara, D.J., Cook, P.D. J. Med. Chem. (1987) [Pubmed]
  3. Permeability of dialyzer membranes to TNF alpha-inducing substances derived from water bacteria. Lonnemann, G., Behme, T.C., Lenzner, B., Floege, J., Schulze, M., Colton, C.K., Koch, K.M., Shaldon, S. Kidney Int. (1992) [Pubmed]
  4. Mutagenic effects of 4-hydroxynonenal triacetate, a chemically protected form of the lipid peroxidation product 4-hydroxynonenal, as assayed in L5178Y/Tk+/- mouse lymphoma cells. Singh, S.P., Chen, T., Chen, L., Mei, N., McLain, E., Samokyszyn, V., Thaden, J.J., Moore, M.M., Zimniak, P. J. Pharmacol. Exp. Ther. (2005) [Pubmed]
  5. In vitro study of the transfer of cytokine-inducing substances across selected high-flux hemodialysis membranes. Evans, R.C., Holmes, C.J. Blood Purif. (1991) [Pubmed]
  6. Influence of cellulose triacetate hemodialyzers on vancomycin pharmacokinetics. Welage, L.S., Mason, N.A., Hoffman, E.J., Odeh, R.M., Dombrouski, J., Patel, J.A., Swartz, R.D. J. Am. Soc. Nephrol. (1995) [Pubmed]
  7. Dialyzer membrane type and reuse practice influence polymorphonuclear leukocyte function in hemodialysis patients. Rao, M., Guo, D., Jaber, B.L., Sundaram, S., Cendoroglo, M., King, A.J., Pereira, B.J., Balakrishnan, V.S. Kidney Int. (2004) [Pubmed]
  8. Di- and triester prodrugs of the varicella-zoster antiviral agent 6-methoxypurine arabinoside. Jones, L.A., Moorman, A.R., Chamberlain, S.D., de Miranda, P., Reynolds, D.J., Burns, C.L., Krenitsky, T.A. J. Med. Chem. (1992) [Pubmed]
  9. Use of 'solid-state' promoters in the electrochemistry of cytochrome c at a gold electrode. Santucci, R., Faraoni, A., Campanella, L., Tranchida, G., Brunori, M. Biochem. J. (1991) [Pubmed]
  10. Dermal absorption and metabolism of the antipsoriatic drug dithranol triacetate. Wiegrebe, W., Retzow, A., Plumier, E., Ersoy, N., Garbe, A., Faro, H.P., Kunert, R. Arzneimittel-Forschung. (1984) [Pubmed]
  11. The treatment of psoriasis with azaribine. Deneau, D.G., Farber, E.M. Dermatologica (1975) [Pubmed]
  12. Absolute concentrations of dithranol and triacetyl-dithranol in the skin layers after local treatment: in vivo investigations with four different types of pharmaceutical vehicles. Kammerau, B., Zesch, A., Schaefer, H. J. Invest. Dermatol. (1975) [Pubmed]
  13. Asymmetric syntheses of (-)-8-epi-swainsonine triacetate and (+)-1, 2-Di-epi-swainsonine. Carbonyl addition thwarted by an unprecedented aza-pinacol rearrangement. Razavi, H., Polt, R. J. Org. Chem. (2000) [Pubmed]
  14. Formal enantiospecific synthesis of (+)-FR900482. Paleo, M.R., Aurrecoechea, N., Jung, K.Y., Rapoport, H. J. Org. Chem. (2003) [Pubmed]
  15. Production and characterization of a monoclonal antibody cross-reactive with most group A trichothecenes. Fan, T.S., Schubring, S.L., Wei, R.D., Chu, F.S. Appl. Environ. Microbiol. (1988) [Pubmed]
  16. A new route to 7-substituted derivatives of n-[4-(2-[2-amino-3,4-dihydro-4-oxo-7H-pyrrolo(2,3-d)pyrimidin-5-yl]ethyl)benzoyl]-L-glutamic acid [ALIMTA (LY231514, MTA)]. Taylor, E.C., Liu, B. J. Org. Chem. (2001) [Pubmed]
  17. Inhibition of bluetongue and Colorado tick fever orbiviruses by selected antiviral substances. Smee, D.F., Sidwell, R.W., Clark, S.M., Barnett, B.B., Spendlove, R.S. Antimicrob. Agents Chemother. (1981) [Pubmed]
  18. Characteristics of the cellulose triacetate membrane for hemofiltration. Sato, H., Kidaka, T. The International journal of artificial organs. (1983) [Pubmed]
  19. Behaviour of mouse macrophage cell line and mouse fibroblast on copolymers containing cellulose triacetate. Shigemasa, Y., Sashiwa, H., Tanioka, S., Saimito, H., Tanigawa, T., Tanaka, Y. Int. J. Biol. Macromol. (1992) [Pubmed]
  20. The use of filtration techniques for the lysis and study of red blood cells. Hultquist, D.E., Vasko, M.R., Gray, R.H. Am. J. Hematol. (1977) [Pubmed]
  21. Cohort mortality study of prostate cancer among chemical workers. Whorton, M.D., Amsel, J., Mandel, J. Am. J. Ind. Med. (1998) [Pubmed]
  22. Aerosol and intraperitoneal administration of ribavirin and ribavirin triacetate: pharmacokinetics and protection of mice against intracerebral infection with influenza A/WSN virus. Gilbert, B.E., Wyde, P.R., Wilson, S.Z., Robins, R.K. Antimicrob. Agents Chemother. (1991) [Pubmed]
  23. Effect of surface-attached heparin on the response of potassium-selective electrodes. Brooks, K.A., Allen, J.R., Feldhoff, P.W., Bachas, L.G. Anal. Chem. (1996) [Pubmed]
  24. Phenylalanine ammonia-lyase entrapped in fibers. Marconi, W., Bartoli, F., Gianna, R., Morisi, F., Spotorno, G. Biochimie (1980) [Pubmed]
  25. Cellular proliferation and second messenger formation altered by dialysis membranes. Pacini, S., Aterini, S., Salvadori, M., Ippolito, E., Ruggiero, M., Amato, M. Nephrol. Dial. Transplant. (1997) [Pubmed]
  26. Salicylic acid determination in cow urine and drugs using a bienzymatic sensor. Campanella, L., Gregori, E., Tomassetti, M. Journal of pharmaceutical and biomedical analysis. (2006) [Pubmed]
  27. Cytokine filtration and adsorption during pre- and postdilution hemofiltration in four different membranes. Bouman, C.S., van Olden, R.W., Stoutenbeek, C.P. Blood Purif. (1998) [Pubmed]
  28. The role of plasma coating on the permeation of cytokine-inducing substances through dialyser membranes. Lonnemann, G., Schindler, R., Lufft, V., Mahiout, A., Shaldon, S., Koch, K.M. Nephrol. Dial. Transplant. (1995) [Pubmed]
  29. A randomized, controlled study of the consequences of hemodialysis membrane composition on erythropoietic response. Richardson, D., Lindley, E.J., Bartlett, C., Will, E.J. Am. J. Kidney Dis. (2003) [Pubmed]
  30. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins. Brunori, M., Santucci, R., Campanella, L., Tranchida, G. Biochem. J. (1989) [Pubmed]
  31. Vitamin B6 and hemodialysis: the impact of high-flux/high-efficiency dialysis and review of the literature. Kasama, R., Koch, T., Canals-Navas, C., Pitone, J.M. Am. J. Kidney Dis. (1996) [Pubmed]
  32. Efficiency of three different hemodialysis membranes for plasma porphyrin removal. Fontanellas, A., Herrero, J.A., Moran, M.J., Coronel, F., Sepulveda, P., Barrientos, A., Enriquez De Salamanca, R. Am. J. Kidney Dis. (1995) [Pubmed]
  33. Nadroparin versus dalteparin anticoagulation in high-volume, continuous venovenous hemofiltration: a double-blind, randomized, crossover study. de Pont, A.C., Oudemans-van Straaten, H.M., Roozendaal, K.J., Zandstra, D.F. Crit. Care Med. (2000) [Pubmed]
  34. Radioimmunoassay of nivalenol in barley. Teshima, R., Hirai, K., Sato, M., Ikebuchi, H., Ichinoe, M., Terao, T. Appl. Environ. Microbiol. (1990) [Pubmed]
  35. High-flux synthetic versus cellulosic membranes for beta 2-microglobulin removal during hemodialysis, hemodiafiltration and hemofiltration. Floege, J., Granolleras, C., Deschodt, G., Heck, M., Baudin, G., Branger, B., Tournier, O., Reinhard, B., Eisenbach, G.M., Smeby, L.C. Nephrol. Dial. Transplant. (1989) [Pubmed]
  36. Immobilization of alpha-amylase into photographic gelatin by chemical cross-linking. Bayramoglu, Z., Akbulut, U., Sungur, S. Biomaterials (1992) [Pubmed]
WikiGenes - Universities