The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Surfactin     3-[(9S,12S,15R,18S,21R)-9- (carboxymethyl)...

Synonyms: LS-186700, LS-187402, AC1L230P, 24730-31-2, surfactin peptide
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Surfactin

  • A general approach has been developed for targeted substitution of amino acid-activating domains within the srfA operon, which encodes the protein templates for the synthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis [1].
  • Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [2].
  • As a result, under standard culture conditions (10% serum) only alamethicin and gramicidin S were able to inhibit mycoplasma growth (MICs, 50 microM), while dermaseptin B2 and surfactin were ineffective [3].
  • One gene was identified as sfpo, a previously reported gene involved in the production of surfactin in B. subtilis and which is highly homologous to the E. coli entD gene [4].
  • Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation [5].
 

High impact information on Surfactin

 

Chemical compound and disease context of Surfactin

 

Biological context of Surfactin

 

Anatomical context of Surfactin

  • Detergent-like action of the antibiotic peptide surfactin on lipid membranes [20].
  • Biosynthesis of surfactin was studied in a cell-free system prepared from B. subtilis ATCC 21332 and OKB 105, which is a transformant producing surfactin in high yield [Nakano, M. M., Marahiel, M. A., & Zuber, P. (1988) J. Bacteriol. 170, 5662-5668] [21].
  • Since detergents/surfactants like SDS (7 x 10(-5) M), NP-40 (2 x 10(-5) M), Tween 80 (10(-4))% w/v), Pluronic F-68 (10(-7) M), and the biosurfactant surfactin (10(-6) M) have the same effect, we suggest that the effectors act by stimulating the cells to exudate surfactant(s) of their own [22].
  • Therefore, it was concluded that the oocyte maturation-inhibiting substance produced by a Bacillus species is surfactin [23].
  • To assess the applicability of this antiviral and antibacterial drug, we determined the cytotoxicity of surfactin with a 50% cytotoxic concentration of 30 to 64 microM for a variety of human and animal cell lines in vitro [24].
 

Associations of Surfactin with other chemical compounds

  • An enzyme fraction was prepared by gel permeation chromatography which catalyzed ATP/pyrophosphate exchange reactions dependent on the component amino acids of surfactin [21].
  • The results show that L-Glu is activated at the first domain of surfactin synthetase, and give further evidence that a serine residue is essential for substrate amino acid activation at the reaction centers of peptide synthetases [25].
  • Mutants cultured in glucose- and glutamine-rich media exhibited a Crs- (catabolite-resistant sporulation) phenotype; enhanced expression of the spo0H gene, encoding sigma H, as evidenced by immunoblot analysis with anti-sigma H antiserum; and derepression of srfA, an operon involved in surfactin biosynthesis and competence development [26].
  • Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D [27].
  • We report that surfactin inhibits biofilm formation of wild-type S. enterica grown either in polyvinyl chloride microtiter wells or in urethral catheters [5].
 

Gene context of Surfactin

  • However, surfactin C at 50 microg ml(-1 )inhibited the LPS-induced increase in the transcription of IL-1beta and iNOS and nitric oxide (NO) production in a dose-dependent manner [28].
  • Resistance to other drugs such as surfactin, iturin A, vancomycin, tunicamycin, gramicidin D, valinomycin and several cationic dyes were not changed in the ywoA disruptant [29].
  • Overproduction of Sfp in B. subtilis did not cause production of an increased amount of surfactin and resulted in the repression of a lacZ transcriptional fusion of the srfA operon, which encodes enzymes that catalyze surfactin synthesis [30].
  • Mutagenesis in Sfp of five residues conserved across the PPTase family was assessed for in vivo effects on surfactin production and in vitro effects on PPTase activity [31].
  • These results demonstrate that surfactin is a selective inhibitor for cytosolic PLA2 and a putative anti-inflammatory agent through the inhibitory effect produced by direct interaction with cytosolic PLA2, and that inhibition of cytosolic PLA2 activity may suppress inflammatory responses [32].
 

Analytical, diagnostic and therapeutic context of Surfactin

References

  1. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Stachelhaus, T., Schneider, A., Marahiel, M.A. Science (1995) [Pubmed]
  2. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Bais, H.P., Fall, R., Vivanco, J.M. Plant Physiol. (2004) [Pubmed]
  3. Susceptibilities of Mycoplasma fermentans and Mycoplasma hyorhinis to membrane-active peptides and enrofloxacin in human tissue cell cultures. Nir-Paz, R., Prévost, M.C., Nicolas, P., Blanchard, A., Wróblewski, H. Antimicrob. Agents Chemother. (2002) [Pubmed]
  4. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes. Grossman, T.H., Tuckman, M., Ellestad, S., Osburne, M.S. J. Bacteriol. (1993) [Pubmed]
  5. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. Mireles, J.R., Toguchi, A., Harshey, R.M. J. Bacteriol. (2001) [Pubmed]
  6. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. Reuter, K., Mofid, M.R., Marahiel, M.A., Ficner, R. EMBO J. (1999) [Pubmed]
  7. 4'-phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. Mootz, H.D., Finking, R., Marahiel, M.A. J. Biol. Chem. (2001) [Pubmed]
  8. Cytosolic phospholipase A2 activation is essential for beta 1 and beta 2 integrin-dependent adhesion of human eosinophils. Zhu, X., Muñoz, N.M., Kim, K.P., Sano, H., Cho, W., Leff, A.R. J. Immunol. (1999) [Pubmed]
  9. Analysis of engineered multifunctional peptide synthetases. Enzymatic characterization of surfactin synthetase domains in hybrid bimodular systems. Symmank, H., Saenger, W., Bernhard, F. J. Biol. Chem. (1999) [Pubmed]
  10. Characterization of the srfA locus of Bacillus subtilis: only the valine-activating domain of srfA is involved in the establishment of genetic competence. van Sinderen, D., Galli, G., Cosmina, P., de Ferra, F., Withoff, S., Venema, G., Grandi, G. Mol. Microbiol. (1993) [Pubmed]
  11. Activities of Antimicrobial Peptides and Synergy with Enrofloxacin against Mycoplasma pulmonis. Fassi Fehri, L., Wróblewski, H., Blanchard, A. Antimicrob. Agents Chemother. (2007) [Pubmed]
  12. Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. Cosby, W.M., Vollenbroich, D., Lee, O.H., Zuber, P. J. Bacteriol. (1998) [Pubmed]
  13. Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator. Hsueh, Y.H., Somers, E.B., Lereclus, D., Wong, A.C. Appl. Environ. Microbiol. (2006) [Pubmed]
  14. Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Hwang, Y.H., Park, B.K., Lim, J.H., Kim, M.S., Park, S.C., Hwang, M.H., Yun, H.I. Eur. J. Pharmacol. (2007) [Pubmed]
  15. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Wei, Y.H., Wang, L.F., Chang, J.S. Biotechnol. Prog. (2004) [Pubmed]
  16. Nucleotide sequence of 5' portion of srfA that contains the region required for competence establishment in Bacillus subtilus. Fuma, S., Fujishima, Y., Corbell, N., D'Souza, C., Nakano, M.M., Zuber, P., Yamane, K. Nucleic Acids Res. (1993) [Pubmed]
  17. Stoichiometry and specificity of in vitro phosphopantetheinylation and aminoacylation of the valine-activating module of surfactin synthetase. Weinreb, P.H., Quadri, L.E., Walsh, C.T., Zuber, P. Biochemistry (1998) [Pubmed]
  18. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. Kohli, R.M., Trauger, J.W., Schwarzer, D., Marahiel, M.A., Walsh, C.T. Biochemistry (2001) [Pubmed]
  19. Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Eppelmann, K., Stachelhaus, T., Marahiel, M.A. Biochemistry (2002) [Pubmed]
  20. Detergent-like action of the antibiotic peptide surfactin on lipid membranes. Heerklotz, H., Seelig, J. Biophys. J. (2001) [Pubmed]
  21. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Ullrich, C., Kluge, B., Palacz, Z., Vater, J. Biochemistry (1991) [Pubmed]
  22. Surface mediated death of unconditioned Tetrahymena cells: effect of physical parameters, growth factors, hormones, and surfactants. Kristiansen, T.B., Hagemeister, J.J., Grave, M., Hellung-Larsen, P. J. Cell. Physiol. (1996) [Pubmed]
  23. Purification and structural determination of an inhibitor of starfish oocyte maturation from a Bacillus species. Toraya, T., Maoka, T., Tsuji, H., Kobayashi, M. Appl. Environ. Microbiol. (1995) [Pubmed]
  24. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Vollenbroich, D., Pauli, G., Ozel, M., Vater, J. Appl. Environ. Microbiol. (1997) [Pubmed]
  25. Analysis of a mutant amino acid-activating domain of surfactin synthetase bearing a serine-to-alanine substitution at the site of carboxylthioester formation. Vollenbroich, D., Kluge, B., D'Souza, C., Zuber, P., Vater, J. FEBS Lett. (1993) [Pubmed]
  26. Mutations in pts cause catabolite-resistant sporulation and altered regulation of spo0H in Bacillus subtilis. Frisby, D., Zuber, P. J. Bacteriol. (1994) [Pubmed]
  27. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., Borriss, R. J. Bacteriol. (2004) [Pubmed]
  28. Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1beta and inducible nitric oxide synthase and nitric oxide production in murine RAW 264.7 cells. Hwang, M.H., Lim, J.H., Yun, H.I., Rhee, M.H., Cho, J.Y., Hsu, W.H., Park, S.C. Biotechnol. Lett. (2005) [Pubmed]
  29. A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. Ohki, R., Tateno, K., Okada, Y., Okajima, H., Asai, K., Sadaie, Y., Murata, M., Aiso, T. J. Bacteriol. (2003) [Pubmed]
  30. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Nakano, M.M., Corbell, N., Besson, J., Zuber, P. Mol. Gen. Genet. (1992) [Pubmed]
  31. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Quadri, L.E., Weinreb, P.H., Lei, M., Nakano, M.M., Zuber, P., Walsh, C.T. Biochemistry (1998) [Pubmed]
  32. Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Kim, K., Jung, S.Y., Lee, D.K., Jung, J.K., Park, J.K., Kim, D.K., Lee, C.H. Biochem. Pharmacol. (1998) [Pubmed]
  33. Structural and functional organization of the surfactin synthetase multienzyme system. Menkhaus, M., Ullrich, C., Kluge, B., Vater, J., Vollenbroich, D., Kamp, R.M. J. Biol. Chem. (1993) [Pubmed]
  34. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Lin, S.C., Minton, M.A., Sharma, M.M., Georgiou, G. Appl. Environ. Microbiol. (1994) [Pubmed]
 
WikiGenes - Universities